• Laser & Optoelectronics Progress
  • Vol. 52, Issue 1, 10003 (2015)
Wu Meirui1、2、3、*, Yang Xibin1、2、3, Xiong Daxi1, Li Hui1, and Wu Xiaodong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop52.010003 Cite this Article Set citation alerts
    Wu Meirui, Yang Xibin, Xiong Daxi, Li Hui, Wu Xiaodong. Structured Illumination Fluorescence Microscopy: Diffraction-Limit Breaking Principle and Application in Life Science[J]. Laser & Optoelectronics Progress, 2015, 52(1): 10003 Copy Citation Text show less
    References

    [1] Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells[J]. Cell, 2010, 143(7): 1047-1058.

    [2] Abbe E. Beitrge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archiv für mikroskopische Anatomie, 1873, 9(1): 413-418.

    [3] Shi Shunxiang, Wang Xue′ en, Liu Jingsong. Physical Optics and Applied Optics[M]. Xi′ an: Xidian University Press, 2008, 139-142.

    [4] Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy[J]. Annual review of biochemistry, 2009, 78: 993.

    [5] Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy[J]. The Journal of Cell Biology, 2010, 190(2): 165-175.

    [6] Lü Zhijian, Lu Jingze, Wu Yaqiong, et al.. Introduction to theories of several super-resolution fluorescence microscopy methods and recent advance in the field[J]. Progress in Biochemistry and Biophysics, 2009, 36(12): 1626-1634.

    [7] Mao Zhengle, Wang Chen, Chen Ya. Superresolution far-field fluorescence bio-imaging: breaking the diffraction barrier[J]. Chinese J Lasers, 2008, 35(9): 1283-1307.

    [8] Betzig E, Patterson G H, Sougrat R, et al.. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

    [9] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. Nature methods, 2006, 3(10): 793-796.

    [10] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emissiondepletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780-782.

    [11] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of microscopy, 2000, 198(2): 82-87.

    [12] Gustafsson M G, Agard D A, Sedat J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination[C]. BiOS 2000 The International Symposium on Biomedical Optics, 2000. 141-150.

    [13] Su Xianyu, Zhang Qican, Chen Wenjing. Three-dimensional imaging based on structured illumination[J]. Chinese J Lasers, 2014, 41(2): 0209001.

    [14] Liu Di, Yao Zhenning, Li Haifeng, et al.. Structured light acquisition system based on waveband separation[J]. Acta Optica Sinica, 2012, 32(6): 0612003.

    [15] Peng Yifan, Tao Yiyang, Yu Chao, et al.. Three-dimenaional display interaction device based on infrared structured light[J]. Acta Optica Sinica, 2013, 33(4): 0412005.

    [16] Su Xianyu, Li Jitao. Information Optics[M]. Chengdu: Sichuan University Press, 1999. 20-26.

    [17] Zhang B, Zerubia J, Olivo-Marin J-C. Gaussian approximations of fluorescence microscope point-spread function models[J]. Applied Optics, 2007, 46(10): 1819-1829.

    [18] Chang B J, Chou L J, Chang Y C, et al.. Isotropic image in structured illumination microscopy patterned with a spatial light modulator[J]. Optics Express, 2009, 17(17): 14710-14721.

    [19] Stokseth P A. Properties of a defocused optical system[J]. J Opt Soc Am, 1969, 59(10): 1314-1321.

    [20] Sedat J W. Fluorescence microscopy in three dimensions[M]// Methods in Cell Biology, fluorescence microscopy of living cells in culture, part B: quantitative fluorescence microscopy-imaging and spectroscopy: fluorescence microscopy of living cells in culture, 1989, 30: 353.

    [21] Gustafsson M G, Shao L, Carlton P M, et al.. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 4957-4970.

    [22] Neil M, Juskaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope[J]. Opt Lett, 1997, 22(24): 1905-1907.

    [23] Karadagli c′ D, Wilson T. Image formation in structured illumination wide-field fluorescence microscopy[J]. Micron, 2008, 39(7): 808-818.

    [24] Heintzmann R, Jovin T M, Cremer C. Saturated patterned excitation microscopy—a concept for optical resolution improvement[J]. J Opt Soc Am A, 2002, 19(8): 1599-1609.

    [25] Heintzmann R. Saturated patterned excitation microscopy with two-dimensional excitation patterns[J]. Micron, 2003, 34(6): 283-291.

    [26] Hao Xiang, Kuang Cuifang, Li Yanghui, et al.. Reversible saturable optical transitions based fluorescence nanoscopy[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030005.

    [27] Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.

    [28] Heintzmann R, Cremer C G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating[C]. BiOS Europe′98, 1999. 185-196.

    [29] Thomas B, Momany M, Kner P. Optical sectioning structured illumination microscopy with enhanced sensitivity[J]. Journal of Optics, 2013, 15(9): 094004.

    [30] Neil M, Jukaitis R, Wilson T. Real time 3D fluorescence microscopy by two beam interference illumination[J]. Opt Commun, 1998, 153(1): 1-4.

    [31] Beversluis M R, Bryant G W, Stranick S J. Effects of inhomogeneous fields in superresolving structured-illumination microscopy[J]. J Opt Soc Am A, 2008, 25(6): 1371-1377.

    [32] Hirvonen L M, Wicker K, Mandula O, et al.. Structured illumination microscopy of a living cell[J]. European Biophysics Journal, 2009, 38(6): 807-812.

    [33] Shao L, Kner P, Rego E H, et al.. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nature Methods, 2011, 8(12): 1044-1046.

    [34] Kner P, Chhun B B, Griffis E R, et al.. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5): 339-342.

    [35] Dan D, Lei M, Yao B, et al.. DMD-based LED-illumination Super-resolution and optical sectioning microscopy[J]. Scientific Reports, 2013, 3(1116): 1-7.

    [36] Xu D, Jiang T, Li A, et al.. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device[J]. Journal of Biomedical Optics, 2013, 18(6): 060503.

    [37] Fukano T, Miyawaki A. Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples[J]. Appl Opt, 2003, 42(19): 4119-4124.

    [38] Cai Dongmei, Yang Huizhen, Ling Ning, et al.. Diffraction effect of liquid crystal spatial light modulator using for beam deflection[J]. Chinese J Lasers, 2008, 35(4): 491-495.

    [39] Du Yanli, Ma Fengying, Gong Qiaoxia, et al.. Optical microscopic imaging technology based on spatial light modulator [J]. Laser & Optoelectronics Progress, 2014, 51(2): 020002.

    [40] Rego E H, Shao L, Macklin J J, et al.. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution[J]. Proceedings of the National Academy of Sciences, 2012, 109(3): E135-E143.

    [41] Fitzgibbon J, Bell K, King E, et al.. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy[J]. Plant Physiology, 2010, 153(4): 1453-1463.

    [42] Schermelleh L, Carlton P M, Haase S, et al.. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 1332-1336.

    [43] Rahman M, Abd-El-Barr M, Mack V, et al.. Optical imaging of cervical pre-cancers with structured illumination: an integrated approach[J]. Gynecologic Oncology, 2005, 99(3): S112-S115.

    [44] Best G, Amberger R, Baddeley D, et al.. Structured illumination microscopy of autofluorescent aggregations in human tissue[J]. Micron, 2011, 42(4): 330-335.

    [45] Sonnen K F, Schermelleh L, Leonhardt H, et al.. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes[J]. Biology Open, 2012, 1(10): 965-976.

    [46] Carlton P M. Three-dimensional structured illumination microscopy and its application to chromosome structure[J]. Chromosome Research, 2008, 16(3): 351-365.

    [47] York A G, Parekh S H, Dalle Nogare D, et al.. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 2012, 9(7): 749-754.

    [48] Lefman J, Scott K, Stranick S. Live, video-rate super-resolution microscopy using structured illumination and rapid GPU-based parallel processing[J]. Microscopy and Microanalysis, 2011, 17(2): 191-196.

    [49] Isobe K, Takeda T, Mochizuki K, et al.. Enhancement of lateral resolution and optical sectioning capability of twophoton fluorescence microscopy by combining temporal-focusing with structured illumination[J]. Biomedical Optics Express, 2013, 4(11): 2396-2410.

    [50] Rossberger S, Best G, Baddeley D, et al.. Combination of structured illumination and single molecule localization microscopy in one setup[J]. Journal of Optics, 2013, 15(9): 094003.

    [51] Fedosseev R, Belyaev Y, Frohn J, et al.. Structured light illumination for extended resolution in fluorescence microscopy[J]. Optics and Lasers in Engineering, 2005, 43(3): 403-414.

    CLP Journals

    [1] Da Jian, Qu Huiming, Tao Tianyang, Chen Qian, Zuo Chao. Real-Time Three-Dimensional Measurement Composite of Epipolar Constraint and Speckle Correlation[J]. Acta Optica Sinica, 2016, 36(10): 1012003

    [2] Zhang Hong, Feng Jihong, Zhang Sen. Effect of Numerical Aperture on Focal Spot of Radially Polarized Beam in Stimulated Emission Depletion Microscopy[J]. Laser & Optoelectronics Progress, 2016, 53(4): 41101

    [3] An Kun, Wang Jing, Liang Dong, Liu Jun. Improving Lateral Resolution of Light Sheet Fluorescence Microscopy with SOFI Method[J]. Chinese Journal of Lasers, 2017, 44(6): 607002

    [4] Xie Chuangliang, Guan Jianing, Bai Yulei, Yang Qiyu, Ye Shuangli, Zhou Yanzhou. Research on the Super-Resolution Microscopy Imaging Based on Random Pulse Coding[J]. Laser & Optoelectronics Progress, 2016, 53(7): 71101

    [5] Li Rui, Qu Huiming, Zhang Yunhai, Jiang Shan. Super-Resolution Optical Fluctuation Imaging Algorithm Based on Spatial Gaussian Filter[J]. Laser & Optoelectronics Progress, 2016, 53(8): 81001

    Wu Meirui, Yang Xibin, Xiong Daxi, Li Hui, Wu Xiaodong. Structured Illumination Fluorescence Microscopy: Diffraction-Limit Breaking Principle and Application in Life Science[J]. Laser & Optoelectronics Progress, 2015, 52(1): 10003
    Download Citation