• Infrared and Laser Engineering
  • Vol. 48, Issue 6, 603015 (2019)
Gu Zhongzheng1、*, Yin Da1, Nie Shouping1, Feng Shaotong1, Xing Fangjian1, Ma Jun2, and Yuan Caojin1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0603015 Cite this Article
    Gu Zhongzheng, Yin Da, Nie Shouping, Feng Shaotong, Xing Fangjian, Ma Jun, Yuan Caojin. Advances of image edge enhancement based on vortex filtering[J]. Infrared and Laser Engineering, 2019, 48(6): 603015 Copy Citation Text show less
    References

    [1] José A Ferrari, Flores J L, César D Perciante, et al. Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters[J]. Applied Optics, 2009, 48(19): 3570-3579.

    [2] Mazzaferri J, Ledesma S. Rotation invariant real-time optical edge detector[J]. Optics Communications, 2007, 272(2):367-376.

    [3] César D Perciante, José A Ferrari. Visualization of two-dimensional phase gradients by subtraction of a reference periodic pattern[J]. Applied Optics, 2000, 39(13): 2081-2083.

    [4] Meihua X. Image enhancement based on edge-directed diffusion[J]. Acta Photonica Sinica, 2005, 34(9): 274-277.

    [5] Xue J, Jie L, Liu Z. An enhancement algorithm for low quality fingerprint image based on edge filter and Gabor filter[C]//SPIE, 2009, 7383: 848-849.

    [6] Jiang X. Research on the key technique of image preprocessing in the fingerprint identification[C]//Software Engineering WCSE WRI World Congress on, 2009, 2: 391-394.

    [7] Foo G, Palacios D M, Swartzlander G A. Optical vortex coronagraph[J]. Optics Letters, 2005, 30(24): 3308-3310.

    [8] Mawet D, Serabyn E, Wallace J K, et al. Improved high contrast imaging with on-axis telescopes using a, multi-stage vortex coronagraph[J]. Optics Letters, 2011, 36(8): 1506-1508.

    [9] Eschbach R. Error-diffusion algorithm with edge enhancement[J]. Journal of the Optical Society of America A, 1991, 8(12): 1844-1850.

    [10] Chung K L, Pei S C, Pan Y L, et al. A gradient-based adaptive error diffusion method with edge enhancement[J]. Expert Systems with Applications, 2011, 38(3): 1591-1601.

    [11] Lai J Z C, Chen C C. Algorithms of halftoning color images with edge enhancement[J]. Journal of Visual Communication and Image Representation, 2003, 14(4): 389-404.

    [12] Rose R A S, Govindaraju S. Hardware based algorithm for chaotic and edge enhanced error diffusion[J]. IEEE Transactions on Consumer Electronics, 2010, 56(3): 1755-1762.

    [13] Feinberg J. Real-time edge enhancement using the photorefractive effect[J]. Optics Letters, 1980, 5(8): 330.

    [14] Jose A Ferrari, Jorge L Flores, Gaston A Ayubi, et al. Orientation-selective edge enhancement of phase objects[J]. Optics Communications, 2019, 434: 44-48.

    [15] Shishido A. Optical image processing by means of photosensitive nonlinear liquid crystal film: edge enhancement and image addition subtraction[J]. Optics Letters, 2001, 26(15): 1140.

    [16] Chaira T. A rank ordered filter for medical image edge enhancement and detection using intuitionistic fuzzy set[J]. Applied Soft Computing, 2012, 12(4): 1259-1266.

    [17] Lohmann A W, Mendlovic D, Zalevsky Z. Fractional Hilbert transform[J]. Optics Letters, 1996, 21(4): 281.

    [18] Davis J A, Mcnamara D E, Cottrell D M. Analysis of the fractional Hilbert transform[J]. Applied Optics, 1998, 37(29):6911-6913.

    [19] Lohmann A W, E Tepichín, J G Ramírez. Optical implementation of the fractional Hubert transform for two-dimensional objects[J]. Applied Optics, 1997, 36(26): 6620-6626.

    [20] Davis J A, Mcnamara D E, Cottrell D M, et al. Image processing with the radial Hilbert transform: theory and experiments[J]. Optics Letters, 2000, 25(2): 99-101.

    [21] Crabtree K, Davis J A, Moreno I. Optical processing with vortex-producing lenses[J]. Applied Optics, 2004, 43(6):1360-1367.

    [22] Swartzlander G A. Peering into darkness with a vortex spatial filter[J]. Optics Letters, 2001, 26(8): 497-499.

    [23] Maurer C, Jesacher A, Fürhaper S, et al. Upgrading a microscope with a spiral phase plate[J]. Journal of Microscopy, 2008, 230(1): 9.

    [24] Severin Fürhapter, Jesacher A, Bernet S, et al. Spiral phase contrast imaging in microscopy[J]. Optics Express, 2005, 13(3): 689-694.

    [25] Bernet S, Jesacher A, Severin Fürhapter, et al. Quantitative imaging of complex samples by spiral phase contrast microscopy[J]. Optics Express, 2006, 14(9): 3792-3805.

    [26] Kotlyar V V, Kovalev A A, Soifer V A, et al. Sidelobe contrast reduction for optical vortex beams using a helical axicon[J]. Optics Letters, 2007, 32(8): 921-923.

    [27] Kotlyar V V, Kovalev A A, Skidanov R V, et al. Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate[J]. Journal of the Optical Society of America A, 2007, 24(7): 1955-1964.

    [28] Lin J, Yuan X C, Tao S H, et al. Variable-radius focused optical vortex with suppressed sidelobes.[J]. Optics Letters, 2006, 31(11): 1600-1602.

    [29] Nándor Bokor, Iketaki Y. Laguerre-Gaussian radial Hilbert transform for edge-enhancement Fourier transform X-ray microscopy[J]. Optics Express, 2009, 17(7): 5533-5539.

    [30] Qiu X, Li F, Zhang W, et al. Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination[J]. Optica, 2018, 5(2): 208.

    [31] Shibiao W, Jing B, Siwei Z, et al. Image edge-enhancement in optical microscopy with a phase mismatched spiral phase plate[J]. Chinese Optics Letters, 2011, 9(3): 29-32.

    [32] Sharma M, Joseph J, Senthilkumaran P. Selective edge enhancement using shifted anisotropic vortex filter[J]. Journal of Optics, 2013, 42(1): 1-7.

    [33] Sharma M K, Joseph J, Senthilkumaran P. Effect of aberrations in vortex spatial filtering[J]. Optics & Lasers in Engineering, 2012, 50(11): 1501-1507.

    [34] Jesacher A, Fürhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy[J]. Physical Review Letters, 2005, 94(23):233902.

    [35] Teich M, Mattern M, Sturm J, et al. Spiral phase mask shadow-imaging for 3D-measurement of flow fields[J]. Optics Express, 2016, 24(24): 27371-27381.

    [36] Gozali R, Nguyen T A, Bendau E, et al. Compact OAM microscope for edge enhancement of biomedical and object samples[J]. Review of Scientific Instruments, 2017, 88(9):093701.

    [37] Ram B S B, Senthilkumaran P, Sharma A. Polarization-based spatial filtering for directional and nondirectional edge enhancement using an S-waveplate[J]. Applied Optics, 2017, 56: 3171-3178.

    [38] Davis J A, Mcnamara D E, Cottrell D M, et al. Image processing with the radial Hilbert transform: theory and experiments.[J]. Optics Letters, 2000, 25(2): 99-101.

    [39] Guo C S, Liu X, He J L, et al. Optimal annulus structures of optical vortices[J]. Optics Express, 2004, 12(19): 4625-4634.

    [40] Guo C S, Liu X, Ren X Y, et al. Optimal annular computer-generated holograms for the generation of optical vortices[J]. Journal of the Optical Society of America A, 2005, 22(2): 385.

    [41] Guo C S, Han Y J, Xu J B, et al. Radial Hilbert transform with Laguerre-Gaussian spatial filters[J]. Optics Letters, 2006, 31(10): 1394-1396.

    [42] Chen J, Yuan X C, Zhao X, et al. Generalized approach to modifying optical vortices with suppressed sidelobes using Bessel-like functions[J]. Optics Letters, 2009, 34(21): 3289-3291.

    [43] Wei S B, Zhu S W, Yuan X C. Image edge enhancement in optical microscopy with a Bessel-like amplitude modulated spiral phase filter[J]. Journal of Optics, 2011, 13(10): 219-224.

    [44] Zhou Y, Feng S, Nie S, et al. Image edge enhancement using airy spiral phase filter.[J]. Optics Express, 2016, 24(22): 25258.

    [45] Situ G, Pedrini G, Osten W. Spiral phase filtering and orientation-selective edge detection/enhancemen[J]. Journal of the Optical Society of America A, 2009, 26(8): 1788.

    [46] Joshi M, Shakher C, Singh K. Image encryption and decryption using fractional Fourier transform and radial Hilbert transform[J]. Optics and Lasers in Engineering, 2008, 46(7): 522-526.

    [47] Zhou Y, Feng S, Nie S, et al. Anisotropic edge enhancement with spiral zone plate under femtosecond laser illumination[J]. Applied Optics, 2017, 56(10): 2641.

    [48] Wang J, Zhang W, Qi Q, et al. Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters[J]. Scientific Reports, 2015, 5: 15826.

    [49] Sharma M K, Joseph J, Senthilkumaran P. Selective edge enhancement using anisotropic vortex filter[J]. Applied Optics, 2011, 50(27): 5279-5286.

    [50] Sharma M K, Joseph J, Senthilkumaran P. Directional edge enhancement using superposed vortex filter[J]. Optics & Laser Technology, 2014, 57: 230-235.

    [51] Li X, Cao Y, Gu M. Superresolution-focal-volume induced 30 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510-2512.

    [52] Yu W, Ji Z, Dong D, et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 2016, 10(1):147-152.

    [53] Xu-Zhen G, Yue P, Meng-Dan Z, et al. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model[J]. Optics Express, 2018, 26(2): 1597-1614.

    [54] Pan Y, Li Y N, Ren Z C, et al. Parabolic-symmetry vector optical fields and their tightly focusing properties[J]. Physical Review A, 2014, 89(3): 035801.

    [55] Pan Y, Li Y, Li S M, et al. Vector optical fields with bipolar symmetry of linear polarization [J]. Optics Letters, 2013, 38(18): 3700-3703.

    [56] Lerman G M, Levy U. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization[J]. Optics Letters, 2007, 32(15): 2194-2196.

    [57] Lerman G M, Stern L, Levy U. Generation and tight focusing of hybridly polarized vector beams[J]. Optics Express, 2010, 18(26): 27650-27657.

    [58] Pan Y, Gao X Z, Cai M Q, et al. Fractal vector optical fields[J]. Optics Letters, 2016, 41: 3161-3164.

    [59] Han L, Liu S, Li P, et al. Managing focal fields of vector beams with multiple polarization singularities[J]. Applied Optics, 2016, 55(32): 9049-9053.

    [60] Pan Y, Li Y N, Ren Z C, et al. Parabolic-symmetry vector optical fields and their tightly focusing properties[J]. Physical Review A, 2014, 89(3): 035801.

    [61] Pan Y, Li Y N, Li S M, et al. Elliptic-symmetry vector optical fields[J]. Optics Express, 2014, 22(16): 19302-19313.

    [62] Pan Y, Li Y, Li S M, et al. Vector optical fields with bipolar symmetry of linear polarization[J]. Optics Letters, 2013, 38(18): 3700-3703.

    [63] Gao X Z, Pan Y, Cai M Q, et al. Hyperbolic-symmetry vector fields[J]. Optics Express, 2015, 23(25): 32238-32252.

    [64] Chen H, Zheng Z, Zhang B F, et al. Polarization structuring of focused field through polarization-only modulation of incident beam[J]. Optics Letters, 2010, 35(16): 2825-2827.

    [65] Chen Z, Zeng T, Ding J. Reverse engineering approach to focus shaping[J]. Optics Letters, 2016, 41(9): 1929-1932.

    [66] Lerman G M, Levy U. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization[J]. Optics Letters, 2007, 32(15): 2194-2196.

    [67] Lerman G M, Lilach Y, Levy U. Demonstration of spatially inhomogeneous vector beams with elliptical symmetry[J]. Optics Letters, 2009, 34(11): 1669-1671.

    [68] Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams[J]. Optics Express, 2010, 18(10): 10828-10833.

    [69] Kawauchi H, Yonezawa K, Kozawa Y, et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam[J]. Optics Letters, 2007, 32(13): 1839-1841.

    [70] Zhan Q. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004,12(15): 3377-3382.

    [71] Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl ofpolarization[J]. Physical Review Letters, 2010, 105(25): 253602.

    [72] Xu D, Gu B, Rui G, et al. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors[J]. Optics Express, 2016, 24(4): 4177-4186.

    [73] Wang X L, Li Y, Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 2010, 18(10): 10786-10795.

    [74] Li L, Chang C, Yuan X, et al. Generation of optical vortex array along arbitrary curvilinear arrangement[J]. Optics Express, 2018, 26(8): 9798.

    [75] Li L, Chang C, Yuan C, et al. High efficiency generation of tunable ellipse perfect vector beams[J]. Photonics Research, 2018, 6(12): 1116-1123.

    [76] Li Delin, Feng Shaotong, Nie Shouping, et al. Generation of arbitrary perfect Poincaré beams[J]. Journal of Applied Physics, 2019, 125: 073105.

    [77] Gu Fengyan, Lin L, Chang Chenliang, et al. Generation offractional ellipse perfect vector beams[J]. Optics Communications, 2019, 443: 44-47.

    [78] Li Delin, Chang Chenliang, Nie Shouping, et al. Generation of elliptic perfect optical vortex and elliptic perfect vector beam by modulating the dynamic and geometric phase[J]. Applied Physics Letters, 2018, 113: 121101.

    [79] Liu Yuanyuan, Liu Zhenxing, Zhou Junxiao, et al. Measurements of Pancharatnam-Berry phase in mode transformations on hybrid-order Poincaré sphere[J]. Optics Letters, 2017, 42(17): 3447-3450.

    [80] Luo H, Zhou J, Wen S, et al. Higher-order laser mode converters with dielectric metasurfaces[J]. Optics Letters, 2015, 40(23): 5506-5509.

    [81] Milione G, Evans S, Nolan D A, et al. Higher order Pancharatnam-Berry phase and the angular momentum of light[J]. Physical Review Letters, 2012, 108(19): 190401.

    [82] Han Y J, Guo C S, Rong Z Y, et al. Radial Hilbert transform with the spatially variable half-wave plate [J]. Optics Letters, 2013, 38(23): 5169-5171.

    [83] Bhargava Ram B S. Paramasivam Senthil-kumaran. Edge enhancement by negative Poincare-Hopf index filters [J]. Optics Letters, 2018, 43(8): 1830-1833.

    [84] Zhang B, Chen Z, Sun H, et al. Vectorial optical vortex filtering for edge enhancement[J]. Journal of Optics, 2016, 18(3): 035703.

    [85] Li Delin, Feng Shaotong, Nie Shouping, et al. Scalar and vectorial vortex filtering based on geometric phase modulation with a Q-plate[J]. Journal of Optics, 2019, 21(6): 065702.

    Gu Zhongzheng, Yin Da, Nie Shouping, Feng Shaotong, Xing Fangjian, Ma Jun, Yuan Caojin. Advances of image edge enhancement based on vortex filtering[J]. Infrared and Laser Engineering, 2019, 48(6): 603015
    Download Citation