• Acta Optica Sinica
  • Vol. 40, Issue 4, 406001 (2020)
Song Peng, Liu Chun*, Zhu Lei, Zhang Lijian, and Zhang Xiaodan
Author Affiliations
  • School of Electronics and Information, Xi''an Polytechnic University, Xi''an, Shaanxi 710048, China
  • show less
    DOI: 10.3788/AOS202040.0406001 Cite this Article Set citation alerts
    Song Peng, Liu Chun, Zhu Lei, Zhang Lijian, Zhang Xiaodan. Analysis of Single-Scatter Path Loss in Wireless Ultraviolet Communication in Mobile Scene[J]. Acta Optica Sinica, 2020, 40(4): 406001 Copy Citation Text show less
    NLOS UV single-scatter propagation model in non-coplanar geometry
    Fig. 1. NLOS UV single-scatter propagation model in non-coplanar geometry
    Determine the upper and lower limits of r. (a) Situation 1; (b) situation 2
    Fig. 2. Determine the upper and lower limits of r. (a) Situation 1; (b) situation 2
    Determine the upper and lower limits of θ and α. (a) Situation 1; (b) situation 2
    Fig. 3. Determine the upper and lower limits of θ and α. (a) Situation 1; (b) situation 2
    Schematic diagram of the center point of micro element V″ in the non-line-of-sight non-coplanar ultraviolet single-scatter transmission model
    Fig. 4. Schematic diagram of the center point of micro element V″ in the non-line-of-sight non-coplanar ultraviolet single-scatter transmission model
    Schematic diagram of research
    Fig. 5. Schematic diagram of research
    Influence of node's position change on path loss
    Fig. 6. Influence of node's position change on path loss
    Comparison of simulation results between TTUM and MC method
    Fig. 7. Comparison of simulation results between TTUM and MC method
    Influence of elevation angle change of transmitter on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    Fig. 8. Influence of elevation angle change of transmitter on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    Influence of elevation angle change of receiver on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    Fig. 9. Influence of elevation angle change of receiver on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    Influence of elevation angle consistent change of transceiver on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    Fig. 10. Influence of elevation angle consistent change of transceiver on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    Influence of beam divergence angle change on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    Fig. 11. Influence of beam divergence angle change on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    Influence of FOV angle change on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    Fig. 12. Influence of FOV angle change on path loss. (a) 0° path; (b) 45° path; (c) 90° path; (d) 135° path; (e) 180° path
    ParameterValue
    Wavelength λ /nm266
    Rayleigh scattering coefficient ksR /(10-3 m-1)0.24
    Mie scattering coefficient ksM /(10-3 m-1)0.25
    Absorption coefficient ka /(10-3 m-1)0.74
    Rayleigh phase function scattering parameter γ0.017
    Mie phase function asymmetry parameter g0.72
    Mie phase function parameter f0.5
    Speed of light c /(108 m·s-1)3
    Receiving aperture radius r /(10-2 m)1.5
    Division times M10
    Table 1. Part of simulation parameters
    Moving distance R /mCommunication distance /mV /m3
    010024858.05
    109018121.51
    208012727.31
    30708526.29
    40605369.31
    50503107.23
    60401590.89
    7030671.14
    8020198.83
    901024.83
    Table 2. Value of V when the receiver moves in 180° direction
    Moving distance R /mSimulation time /sTime difference /sPL /dBPL difference /dB
    TTUMMCTTUMMC
    08.713849.610040.896289.343089.57400.2310
    108.695449.578240.882889.875790.12280.2471
    208.720549.594840.874390.768591.00460.2361
    308.640749.860341.219691.791691.97810.1865
    408.583749.564840.981192.856592.99450.1380
    508.608549.362240.753793.880893.99240.1116
    608.555049.612741.057794.937794.99090.0532
    708.522249.357540.835395.908295.96980.0616
    808.486749.282940.796296.808796.86880.0601
    908.491949.420640.928797.636597.74060.1041
    1008.451649.173640.722098.478898.56980.0910
    Table 3. Contrast data between TTUM and MC
    Song Peng, Liu Chun, Zhu Lei, Zhang Lijian, Zhang Xiaodan. Analysis of Single-Scatter Path Loss in Wireless Ultraviolet Communication in Mobile Scene[J]. Acta Optica Sinica, 2020, 40(4): 406001
    Download Citation