• Laser & Optoelectronics Progress
  • Vol. 56, Issue 21, 212802 (2019)
Chaoping Zeng1, Lijun Ju1, and Jianchen Zhang2、*
Author Affiliations
  • 1Department of Space Information Engineering, Henan College of Surveying and Mapping, Zhengzhou, Henan 450015, China
  • 2College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China
  • show less
    DOI: 10.3788/LOP56.212802 Cite this Article Set citation alerts
    Chaoping Zeng, Lijun Ju, Jianchen Zhang. Hyperspectral Image Classification Based on Clustering Dimensionality Reduction and Visual Attention Mechanism[J]. Laser & Optoelectronics Progress, 2019, 56(21): 212802 Copy Citation Text show less
    References

    [1] Fan B, Chen X, Li B C et al. Technical innovation of optical remote sensing payloads onboard GF-5 satellite[J]. Infrared and Laser Engineering, 46, 0102002(2017).

    [2] Wei X H, Zhu W, Liao B et al. Matrix-based margin-maximization band selection with data-driven diversity for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 7294-7309(2018). http://ieeexplore.ieee.org/document/8412207/

    [3] Xie W Y, Li Y S, Hu J et al. Trainable spectral difference learning with spatial starting for hyperspectral image denoising[J]. Neural Networks, 108, 272-286(2018).

    [4] Yu X C, Wang R R, Liu B et al. Salient feature extraction for hyperspectral image classification[J]. Remote Sensing Letters, 10, 553-562(2019). http://www.tandfonline.com/doi/full/10.1080/2150704X.2019.1579936?src=recsys

    [5] Wu K, Xu G, Zhang Y X et al. Hyperspectral image target detection via integrated background suppression with adaptive weight selection[J]. Neurocomputing, 315, 59-67(2018).

    [6] Mananze S, Pôças I, Cunha M. Retrieval of maize leaf area index using hyperspectral and multispectral data[J]. Remote Sensing, 10, 1942(2018).

    [7] Prasad S, Bruce L M. Limitations of principal components analysis for hyperspectral target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 5, 625-629(2008). http://ieeexplore.ieee.org/document/4656486

    [8] Benediktsson J A, Palmason J A, Sveinsson J R. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 43, 480-491(2005).

    [9] Mura M D, Benediktsson J A, Waske B et al. Extended profiles with morphological attribute filters for the analysis of hyperspectral data[J]. International Journal of Remote Sensing, 31, 5975-5991(2010). http://dl.acm.org/citation.cfm?id=1898625

    [10] Li W Y, Wang P, Qiao H. A survey of visual attention based methods for object tracking[J]. Acta Automatica Sinica, 40, 561-576(2014).

    [11] Martínez-Usómartinez-Uso A, Pla F, Sotoca J M et al. . Clustering-based hyperspectral band selection using information measures[J]. IEEE Transactions on Geoscience and Remote Sensing, 45, 4158-4171(2007). http://ieeexplore.ieee.org/document/4378560

    [12] Sui C H, Tian Y, Xu Y P et al. Unsupervised band selection by integrating the overall accuracy and redundancy[J]. IEEE Geoscience and Remote Sensing Letters, 12, 185-189(2015). http://ieeexplore.ieee.org/document/6853323/

    [13] Shi J P, Yan Q, Xu L et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 717-729(2016). http://www.tandfonline.com/servlet/linkout?suffix=CIT0024&dbid=8&doi=10.1080%2F15481603.2018.1454391&key=26959676

    [14] Borji A, Itti L. State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 185-207(2013). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.89

    [15] Cheng M M. Saliency and similarity detection for image scene analysis[D]. Beijing: Tsinghua University(2012).

    [16] Gonzalez R, Woods R E. Digital image processing[M]. USA: Prentice-Hall(2002).

    [17] Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 603-619(2002). http://jamia.bmj.com/external-ref?access_num=10.1109/34.1000236&link_type=DOI

    [18] Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 59, 167-181(2004). http://www.mathworks.cn/matlabcentral/fileexchange/25866-efficient-graph-based-image-segmentationImage

    [19] Liu T, Yuan Z J, Sun J et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 353-367(2011). http://www.ncbi.nlm.nih.gov/pubmed/21193811

    [20] Shen X H, Wu Y. A unified approach to salient object detection via low rank matrix recovery. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 853-860(2012).

    [21] Ren Z W, Wu L D. Hyperspectral intrinsic image decomposition based on automatic subspace partitioning[J]. Laser & Optoelectronics Progress, 55, 103004(2018).

    Chaoping Zeng, Lijun Ju, Jianchen Zhang. Hyperspectral Image Classification Based on Clustering Dimensionality Reduction and Visual Attention Mechanism[J]. Laser & Optoelectronics Progress, 2019, 56(21): 212802
    Download Citation