• Photonics Research
  • Vol. 11, Issue 6, 1085 (2023)
Xiaofeng Wang1, Jiafu Wang1,2,*, Yajuan Han1, Mingbao Yan1..., Yongfeng Li1, Tonghao Liu1, Hua Ma1 and Shaobo Qu1,3,*|Show fewer author(s)
Author Affiliations
  • 1Shaanxi Key Laboratory of Artificially-Structured Functional Material and Devices, Air Force Engineering University, Xi’an 710051, China
  • 2e-mail: wangjiafu1981@126.com
  • 3e-mail: qushaobo@mail.xjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.481821 Cite this Article Set citation alerts
    Xiaofeng Wang, Jiafu Wang, Yajuan Han, Mingbao Yan, Yongfeng Li, Tonghao Liu, Hua Ma, Shaobo Qu, "Leaky cavity modes in metasurfaces: a route to low-loss wideband anomalous dispersion," Photonics Res. 11, 1085 (2023) Copy Citation Text show less
    References

    [1] B. Wang, T. Koschny, C. M. Soukoulis. Wide-angle and polarization-independent chiral metamaterial absorber. Phys. Rev. B, 80, 033108(2009).

    [2] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. A perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [3] Y. Cheng, H. Yang, Z. Cheng, N. Wu. Perfect metamaterial absorber based on a split-ring-cross resonator. Appl. Phys. A, 102, 99-103(2011).

    [4] Y. Cheng, H. Yang, Z. Cheng, B. Xiao. A planar polarization-insensitive metamaterial absorber. Photonics Nanostr. Fundam. Appl., 9, 8-14(2011).

    [5] B. Wang, C. Ma, P. Yu, A. O. Govorov, H. Xu, W. Wang, L. V. Besteiro, Z. Jing, P. Li, Z. Wang. Ultra-broadband nanowire metamaterial absorber. Photonics Res., 10, 2718-2727(2022).

    [6] C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, T. Cui. Transparently curved metamaterial with broadband millimeter wave absorption. Photonics Res., 7, 478-485(2019).

    [7] X. Tian, Z.-Y. Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photonics Res., 4, 146-152(2016).

    [8] H. O. Ali, A. M. Al-Hindawi, Y. I. Abdulkarim, M. Karaaslan. New compact six-band metamaterial absorber based on closed circular ring resonator (CCRR) for radar applications. Opt. Commun., 503, 127457(2022).

    [9] J. Yi, C. Dong, W. Xue, X. Chen. A switchable metamaterial absorber for fine-tuning of the coherence bandwidth in a reverberation chamber. IEEE Trans. Antennas Propag., 70, 4908-4913(2022).

    [10] R. Kumar, B. K. Singh, R. K. Tiwari, P. C. Pandey. Perfect selective metamaterial absorber with thin-film of GaAs layer in the visible region for solar cell applications. Opt. Quantum Electron., 54, 416(2021).

    [11] F. Aieta, M. A. Kats, P. Genevet, F. Capasso. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).

    [12] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [13] X. Xie, M. Pu, X. Li, K. Liu, J. Jin, X. Ma, X. Luo. Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces. Photonics Res., 7, 586-593(2019).

    [14] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, H. C. Cheng, J. W. Chen, S. H. Lu, C. Ji, B. Xu, C. H. Kuan. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [15] Y. She, C. Ji, C. Huang, Z. Zhang, J. Liao, J. Wang, X. Luo. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching. Photonics Res., 10, 769-776(2022).

    [16] J. Yang, J. Wang, Y. Li, Z. Wang, H. Chen, X. Wang, S. Qu. Broadband planar achromatic anomalous reflector based on dispersion engineering of spoof surface plasmon polariton. Appl. Phys. Lett., 109, 211901(2016).

    [17] J. Yang, J. Wang, M. Feng, Y. Li, X. Wang, X. Zhou, T. Cui, S. Qu. Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons. Appl. Phys. Lett., 110, 203507(2017).

    [18] R. Zhu, J. Wang, T. Qiu, S. Sui, S. Qu. Overcome chromatism of metasurface via greedy algorithm empowered by self-organizing map neural network. Opt. Express, 28, 35724-35733(2020).

    [19] L. U. Xinjian, L. I. Xiaoyin, Y. Guo, P. U. Mingbo, J. Wang, Y. Zhang, L. I. Xiong, M. A. Xiaoliang, X. Luo. Broadband high-efficiency polymerized liquid crystal metasurfaces with spin-multiplexed functionalities in the visible. Photonics Res., 10, 1380-1393(2022).

    [20] R. K. Ahrenkiel. Modified Kramers–Kronig analysis of optical spectra. J. Opt. Soc. Am., 61, 1651-1655(1971).

    [21] S. A. R. Horsley, M. Artoni, G. C. La Rocca. Spatial Kramers–Kronig relations and the reflection of waves. Nat. Photonics, 9, 436-439(2015).

    [22] W. Zang, Q. Yuan, R. Chen, L. Li, T. Li, X. Zou, G. Zheng, Z. Chen, S. Wang, Z. Wang. Chromatic dispersion manipulation based on metalenses. Adv. Mater., 32, 1904935(2020).

    [23] A. V. Hippel. Dielectrics and Waves(1954).

    [24] H. Zhao, B. Qin, N. Hu. Design principles of single-coated absorbing materials. J. Harbin Inst. Technol., 2, 25(1993).

    [25] S. Qu. Metamaterial Design and Applications in Stealth Technology(2013).

    [26] M. Wartak. Computational Photonics(2013).

    [27] F. Presutti, F. Monticone. Focusing on bandwidth: achromatic metalens limits. Optica, 7, 624-631(2020).

    [28] M. Khorasaninejad, Z. Shi, A. Y. Zhu, W.-T. Chen, V. Sanjeev, A. Zaidi, F. Capasso. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [29] S. N. Atutov, W. Baldini, R. Calabrese, V. Guidi, L. Moi. Achromatic optical device for generation of a broadband frequency spectrum with high-frequency stability and sharp termination. J. Opt. Soc. Am. B, 18, 335-339(2001).

    [30] C. C. Alexay. Wide Band Achromatic Visible to Near-Infrared Lens Design(2008).

    [31] M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, F. Capasso. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett., 15, 5358-5362(2015).

    [32] X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, T. Zentgraf. Dual-polarity plasmonic metalens for visible light. Nat. Commun., 3, 1198(2012).

    [33] K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, Q. Wu. High-efficiency metalenses with switchable functionalities in microwave region. ACS Appl. Mater. Interfaces, 11, 28423-28430(2019).

    [34] X. Wang, J. Wang, M. Yan, T. Liu, R. Zhu, Y. Han, Y. Li, L. Zheng, S. Qu. Tailoring standing waves on meta-atom: a facile way to a high-efficiency functional metasurface with spin-selectivity. Opt. Mater. Express, 12, 1271-1280(2022).

    Xiaofeng Wang, Jiafu Wang, Yajuan Han, Mingbao Yan, Yongfeng Li, Tonghao Liu, Hua Ma, Shaobo Qu, "Leaky cavity modes in metasurfaces: a route to low-loss wideband anomalous dispersion," Photonics Res. 11, 1085 (2023)
    Download Citation