• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 3, 381 (2021)
Xu-Dong LAI1、2, Yi-Fei YUAN1, Jing-Zhong XU1、*, and Ming-Wei WANG3
Author Affiliations
  • 1School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • 2Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources, Wuhan 430079, China
  • 3Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.03.015 Cite this Article
    Xu-Dong LAI, Yi-Fei YUAN, Jing-Zhong XU, Ming-Wei WANG. LiDAR waveform decomposition based on modified differential evolution algorithm[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 381 Copy Citation Text show less
    References

    [1] C Mallet, F Bretar. Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 1-16(2009).

    [2] Peng-Cheng Li. The Technology of Terrain and Building Reconstruction Using Airborne Full-Waveform LiDAR Data(2015).

    [3] G Mandlburger, C Hauer, M Wieser et al. Topo-bathymetric LiDAR for monitoring river morphodynamics and instream habitats—A case study at the Pielach River. Remote Sensing, 7, 6160-6195(2015).

    [4] T Allouis, S Durrieu, P Couteron. A new method for incorporating hillslope effects to improve canopy-height estimates from large-footprint LIDAR waveforms. IEEE Geoscience and Remote Sensing Letters, 9, 730-734(2012).

    [5] W Wagner, A Ullrich, T Melzer et al. From single-pulse to full-waveform airborne laser scanners: Potential and practical challenges. International Archives Photogrammetry, Remote Sensing, 35, 414-419(2004).

    [6] J Wu, J A N Van Aardt, G P Asner. A comparison of signal deconvolution algorithms based on small-footprint LiDAR waveform simulation, 49, 2402-2414(2011).

    [7] M Bruggisser, A Roncat, E S Michael et al. Retrieval of higher order statistical moments from full-waveform LiDAR data for tree species classification. Remote Sensing of Environment, 196, 28-41(2017).

    [8] L Abady, J S Bailly, N Baghdadi et al. Assessment of quadrilateral fitting of the water column contribution in Lidar waveforms on bathymetry estimates. IEEE Geoscience and Remote Sensing Letters, 11, 813-817(2014).

    [9] C Mallet, F Bretar, M Roux et al. Relevance assessment of full-waveform lidar data for urban area classification. ISPRS journal of photogrammetry and remote sensing, 66, S71-S84(2011).

    [10] A Chauve, c Mallet, F Bretar et al. Processing full-waveform Lidar data: modelling raw signals. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36, 102-107(2008).

    [11] S B Hmida, A Kallel, J P Gastellu-Etchegorry et al. Crop biophysical properties estimation based on LiDAR full-waveform inversion using the DART RTM. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 4853-4868(2017).

    [12] G Mountrakis, Y Li. A linearly approximated iterative Gaussian decomposition method for waveform LiDAR processing. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 200-211(2017).

    [13] Xue-Bo Yang, Cheng Wang, Xiao-Huan Xi et al. Wavelet transform of Gaussian progressive decomposition method for full-waveform LiDAR data. J.Infrared Millim.Waves, 036, 749-755(2017).

    [14] Q Li, W Zhou, C Li. Use of Airborne LiDAR To Estimate Forest Stand Characteristics. Iop Conference Series, 17, 012252(2014).

    [15] F Xu, F Li, Y Wang. Modified Levenberg–Marquardt-based optimization method for LiDAR waveform decomposition. IEEE Geoscience and Remote Sensing Letters, 13, 1-5(2016).

    [16] Xu-Dong Lai, Nan-Nan Qin, Xiao-Shuang Han et al. Iterative decomposition method for small foot-print LiDAR waveform. J.Infrared Millim.Waves, 32, 319-324(2013).

    [17] F C Chang, H C Huang. A refactoring method for cache-efficient swarm intelligence algorithms. Information Sciences, 192, 39-49(2012).

    [18] A Slowik, H Kwasnicka. Nature inspired methods and their industry applications—swarm intelligence algorithms. IEEE Transactions on Industrial Informatics, 14, 1004-1015(2017).

    [19] A Alomari, W Phillips, N Aslam et al. Swarm intelligence optimization techniques for obstacle-avoidance mobility-assisted localization in wireless sensor networks. IEEE Access, 6, 22368-22385(2018).

    [20] Phoa, F K Hing. A Swarm Intelligence Based (SIB) method for optimization in designs of experiments. Natural Computing, 16, 597-605(2017).

    [21] A A A Oliveira, J A S Centeno, F S Hainosz. Point cloud generation from Gaussian decomposition of the waveform laser signal with genetic algorithms. Boletim de Ciências Geodésicas, 24, 270-287(2018).

    [22] D Li, L Xu, X Li. Full-waveform LiDAR echo decomposition based on wavelet decomposition and particle swarm optimization. Measurement Science and Technology, 28, 045205(2017).

    [23] S Goudarzi, W H Hassan, H A Mohammad. Comparison between hybridized algorithm of GA–SA and ABC, GA, DE and PSO for vertical-handover in heterogeneous wireless networks. Sādhanā, 41, 727-753(2016).

    [24] V Pano, P R Ouyang. Comparative study of GA, PSO, and DE for tuning position domain PID controller, 1254-1259(2015).

    [25] M A Panduro, C A Brizuela. A comparative analysis of the performance of GA, PSO and DE for circular antenna arrays, 1-4(2009).

    [26] Fang Wang, Mei-An Li, Wei-Jun Duan et al. Cloud computing task scheduling based on dynamically adaptive ant colony algorithm. Journal of Computer Applications, 33, 3160-3162+3196(2013).

    [27] Liang He. Research on small-footprint ALS full-waveform data processing technology(2015).

    [28] X Lai, M Zheng. A denoising method for LiDAR full-waveform data. Mathematical Problems in Engineering, 2015, 1-8(2015).

    [29] J Zhu, Z Zhang, X Hu et al. Analysis and application of LiDAR waveform data using a progressive waveform decomposition method. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12, 31-36(2011).

    [30] M Słota. Decomposition techniques for full-waveform airborne laser scanning data. Geomatics and Environmental Engineering, 8, 61-74(2014).

    [31] Guang-Cai Xu. Research on Airborne LIDAR waveform data processing and classifying(2010).

    [32] Zhi-Li Meng, Jing-Zhong Xu. A lateral Gaussian decomposition method of airborne lidar full-waveform data. Geomatics and Information Science of Wuhan University, 043, 81-86,100(2018).

    [33] X Yu, M Cai, J Cao. A novel mutation differential evolution for global optimization. Journal of Intelligent and Fuzzy Systems, 28, 1047-1060(2015).

    [34] J Wang, J Liao, Y Zhou et al. Differential evolution enhanced with multiobjective sorting-based mutation operators. IEEE Transactions on Cybernetics, 44, 2792-2805(2017).

    [35] K Price, R M Storn, J A Lampinen. Differential evolution: a practical approach to global optimization. Springer Science & Business Media(2006).

    [36] I Fister, M Perc, S M Kamal et al. A review of chaos-based firefly algorithms. Applied Mathematics and Computation, 252, 155-165(2015).

    [37] Y Shen. A chaos genetic algorithm based extended Kalman filter for the available capacity evaluation of lithium-ion batteries. Electrochimica Acta, 264, 400-409(2018).

    [38] G I Sayed, G Khoriba, M H Haggag et al. A novel chaotic salp swarm algorithm for global optimization and feature selection. Applied Intelligence, 48, 3462-3481(2018).

    [39] Wu-Ming Zhang, Yuexian Zhong. Camera calibration based on improved differential evolution algorithm. OPTICAL TECHNIQUE, 30, 720-723(2004).

    [40] Q Zhang, M Yuan, R Song. Robot trajectory planning method based on genetic chaos optimization algorithm, 602-607(2017).

    [41] B Xu, W Jiang, J Shan et al. Investigation on the weighted ransac approaches for building roof plane segmentation from lidar point clouds. Remote Sensing, 8, 5(2016).

    Xu-Dong LAI, Yi-Fei YUAN, Jing-Zhong XU, Ming-Wei WANG. LiDAR waveform decomposition based on modified differential evolution algorithm[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 381
    Download Citation