• Laser & Optoelectronics Progress
  • Vol. 58, Issue 3, 3000031 (2021)
Fan Mengqiu1、2、*, Xia Handing1, Xu Dangpeng1, Zhang Rui1, and Zheng Wanguo1
Author Affiliations
  • 1Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang , Sichuan 621900, China
  • 2Graduate School, China Academy of Engineering Physics, Beijing 100088, China
  • show less
    DOI: 10.3788/LOP202158.0300003 Cite this Article Set citation alerts
    Fan Mengqiu, Xia Handing, Xu Dangpeng, Zhang Rui, Zheng Wanguo. Research Progress of New Regime Mode?Locked Fiber Lasers and Amplification and Compression Technologies[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3000031 Copy Citation Text show less
    References

    [1] Wise F W, Chong A, Renninger W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser & Photonics Reviews, 2, 58-73(2008).

    [2] Yu X, Luo J Q, Xiao X S et al. Research progress of high⁃power ultrafast fiber lasers. Chinese Journal of Lasers, 46, 0508007(2019).

    [3] Zhang Z G. Femtosecond laser technology(2011).

    [4] Fu W, Wright L G, Sidorenko P et al. Several new directions for ultrafast fiber lasers. Optics Express, 26, 9432-9463(2018).

    [5] Fermann M E, Hofer M, Haberl F et al. Femtosecond fibre laser. Electronics Letters, 26, 1737(1990).

    [6] Hofer M, Fermann M E, Haberl F et al. Mode locking with cross-phase and self-phase modulation. Optics Letters, 16, 502-504(1991).

    [7] Ober M H, Hofer M, Fermann M E. 42-fs pulse generation from a mode-locked fiber laser started with a moving mirror. Optics Letters, 18, 367-369(1993).

    [8] Tamura K, Ippen E P, Haus H A et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Optics Letters, 18, 1080-1082(1993).

    [9] Nelson L E, Fleischer S B, Lenz G et al. Efficient frequency doubling of a femtosecond fiber laser. Optics Letters, 21, 1759-1761(1996).

    [10] Ilday F O, Buckley J R, Lim H et al. Generation of 50-fs, 5-nJ pulses at 1.03 micrometre from a wave-breaking-free fiber laser. Optics Letters, 28, 1365-1367(2003).

    [11] Ilday F O, Buckley J R, Clark W G et al. Self-similar evolution of parabolic pulses in a laser. Physical Review Letters, 92, 213902(2004).

    [12] Buckley J R, Wise F W, Ilday F O et al. Femtosecond fiber lasers with pulse energies above 10 nJ. Optics Letters, 30, 1888-1890(2005).

    [13] Ruehl A, Hundertmark H, Wandt D et al. 0.7 W all-fiber erbium oscillator generating 64 fs wave breaking-free pulses. Optics Express, 13, 6305-6309(2005).

    [14] Chong A, Buckley J, Renninger W et al. All-normal-dispersion femtosecond fiber laser. Optics Express, 14, 10095-10100(2006).

    [15] Tang D Y, Zhao L M. Generation of 47‍-‍fs pulses directly from an erbium‍-‍doped fiber laser. Optics Letters, 32, 41-43(2007).

    [16] Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. Optics Letters, 32, 2408-2410(2007).

    [17] Ruehl A, Kuhn V, Wandt D et al. Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ. Optics Express, 16, 3130-3135(2008).

    [18] Oktem B, Ülgüdür C, Ilday F Ö. Soliton-similariton fibre laser. Nature Photonics, 4, 307-311(2010).

    [19] Renninger W H, Chong A, Wise F W. Self-similar pulse evolution in an all-normal-dispersion laser. Physical Review A, 82, 021805(2010).

    [20] Nie B, Pestov D, Wise F W et al. Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment. Optics Express, 19, 12074-12080(2011).

    [21] Lan Y, Song Y J, Hu M L et al. Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser. Optics Letters, 38, 1292-1294(2013).

    [22] Samartsev I, Bordenyuk A, Gapontsev V. Environmentally stable seed source for high power ultrafast laser. Proceedings of SPIE, 10085, 100850S(2017).

    [23] Liu Z W, Ziegler Z M, Wright L G et al. Megawatt peak power from a Mamyshev oscillator. Optica, 4, 649(2017).

    [24] All-optical data regeneration based on self-phase modulation effect(98).

         IEEE Cat, Mamyshev P V. 1998, Madrid, Spain, 475-476(1998).

    [25] Piche M. Mode locking through nonlinear frequency broadening and spectral filtering. Proceedings of SPIE, 2041, 358-365(1994).

    [26] Sidorenko P, Fu W, Wright L G et al. Self-seeded, multi-megawatt, Mamyshev oscillator. Optics Letters, 43, 2672-2675(2018).

    [27] Liu W, Liao R Y, Zhao J et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power. Optica, 6, 194-197(2019).

    [28] Ma C Y, Khanolkar A, Zang Y M et al. Ultrabroadband, few-‍cycle pulses directly from a Mamyshev fiber oscillator. Photonics Research, 8, 65-69(2020).

    [29] Olivier M, Boulanger V, Guilbert-Savary F et al. Femtosecond fiber Mamyshev oscillator at 1550 nm. Optics Letters, 44, 851-854(2019).

    [30] Wang P, Yao S, Grelu P et al. Pattern formation in 2-μm Tm Mamyshev oscillators associated with the dissipative Faraday instability. Photonics Research, 7, 1287-1295(2019).

    [31] Hao Q, Chen F H, Zeng H P. 2017, 1-2(2017).

    [32] Krzempek K, Sotor J, Abramski K. Compact all⁃fiber figure-9 dissipative soliton resonance mode-locked double-clad Er: Yb laser. Optics Letters, 41, 4995-4998(2016).

    [33] Wang X F, Xia Q, Gu B. A 1.9 μm noise-like mode-locked fiber laser based on compact figure-9 resonator. Optics Communications, 434, 180-183(2019).

    [34] Zhao K J, Wang P, Ding Y H et al. High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser. Applied Physics Express, 12, 012002(2019).

    [35] Zheng Z J, Ouyang D Q, Ren X K et al. 0.33 mJ, 104.3 W dissipative soliton resonance based on a figure-of-9 double-clad Tm-doped oscillator and an all-fiber MOPA system. Photonics Research, 7, 513-517(2019).

    [36] Zhou X K, Song Y J, Liao R Y et al. Research on modified nonlinear amplifying loop mirror mode-locked lasers. Chinese Journal of Lasers, 42, 1202002(2015).

    [37] Jiang T X, Cui Y F, Lu P et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror. IEEE Photonics Technology Letters, 28, 1786-1789(2016).

    [38] Chen F H, Hao Q, Zeng H P. Optimization of an NALM mode-locked all-PM Er: fiber laser system. IEEE Photonics Technology Letters, 29, 2119-2122(2017).

    [39] Liu W, Shi H, Cui J et al. Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror. Optics Letters, 43, 2848-2851(2018).

    [40] Zhou J Q, Pan W W, Fu X H et al. Environmentally-stable 50-fs pulse generation directly from an Er: fiber oscillator. Optical Fiber Technology, 52, 101963(2019).

    [41] Wright L G, Christodoulides D N, Wise F W. Controllable spatiotemporal nonlinear effects in multimode fibres. Nature Photonics, 9, 306-310(2015).

    [42] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).

    [43] Wright L G, Renninger W H, Christodoulides D N et al. Spatiotemporal dynamics of multimode optical solitons. Optics Express, 23, 3492-3506(2015).

    [44] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers. Nature Photonics, 7, 861-867(2013).

    [45] Zhang Z G. Coherent pulse stacking: an innovation beyond the chirped pulse amplification. Laser & Optoelectronics Progress, 54, 120001(2017).

    [46] Klenke A, Müller M, Stark H et al. Coherent beam combination of ultrafast fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-9(2018).

    [47] Müller M, Kienel M, Klenke A et al. 1 kW 1mJ eight⁃channel ultrafast fiber laser. Optics Letters, 41, 3439-3442(2016).

    [48] Huang L L, Hu M L, Fang X H et al. Generation of 110-W sub-100-fs pulses at 100 MHz by nonlinear amplification based on multicore photonic crystal fiber. IEEE Photonics Journal, 8, 7101307(2016).

    [49] Thielen P A, Ho J G, Burchman D A et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam. Optics Letters, 37, 3741-3743(2012).

    [50] Zhou T, Sano T, Wilcox R. Coherent combination of ultrashort pulse beams using two diffractive optics. Optics Letters, 42, 4422-4425(2017).

    [51] Zhou T, Du Q, Sano T et al. Two-dimensional combination of eight ultrashort pulsed beams using a diffractive optic pair. Optics Letters, 43, 3269-3272(2018).

    [52] Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses. Optics Letters, 32, 871-873(2007).

    [53] Kienel M, Muller M, Klenke A et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. Optics Letters, 41, 3343-3346(2016).

    [54] Breitkopf S, Eidam T, Klenke A et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities. Light: Science & Applications, 3(2014).

    [55] Zhou T, Ruppe J, Zhu C et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers. Optics Express, 23, 7442-7462(2015).

    [56] Zhou T, Ruppe J, Zhu C et al. 2015, 1-2(2015).

    [57] Hädrich S, Kienel M, Müller M et al. Energetic sub-2-cycle laser with 216 W average power. Optics Letters, 41, 4332-4335(2016).

    [58] Gebhardt M, Gaida C, Heuermann T et al. Nonlinear pulse compression to 43 W GW-class few-cycle pulses at 2 μm wavelength. Optics Letters, 42, 4179-4182(2017).

    [59] Nagy T, Hädrich S, Simon P et al. Generation of three-cycle multi-‍millijoule laser pulses at 318 W average power. Optica, 6, 1423-1424(2019).

    [60] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers. Chinese Journal of Lasers, 46, 0508012(2019).

    Fan Mengqiu, Xia Handing, Xu Dangpeng, Zhang Rui, Zheng Wanguo. Research Progress of New Regime Mode?Locked Fiber Lasers and Amplification and Compression Technologies[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3000031
    Download Citation