• High Power Laser and Particle Beams
  • Vol. 34, Issue 3, 031014 (2022)
Guangjin Ma1、2, Chunlai Li1、2, and Jin He1、2
Author Affiliations
  • 1Peking University Shenzhen Institute, Shenzhen 518057, China
  • 2Shenzhen SoC Key Laboratory, PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen 518057, China
  • show less
    DOI: 10.11884/HPLPB202234.210297 Cite this Article
    Guangjin Ma, Chunlai Li, Jin He. Attosecond light pulses in simulations using various laser plasmas[J]. High Power Laser and Particle Beams, 2022, 34(3): 031014 Copy Citation Text show less
    References

    [1] Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nat Photon, 5, 655-663(2011).

    [2] Kühn S, Dumergue M, Kahaly S, et al. The ELI-ALPS facility: the next generation of attosecond sources[J]. J Phys B:At Mol Opt Phys, 50, 132002(2017).

    [3] Christov I P, Murnane M M, Kapteyn H C. High-harmonic generation of attosecond pulses in the “single-cycle” regime[J]. Phys Rev Lett, 78, 1251-1254(1997).

    [4] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 320, 1614-1617(2008).

    [5] Ivanov M, Corkum P B, Zuo Tao, et al. Routes to control of intense-field atomic polarizability[J]. Phys Rev Lett, 74, 2933-2936(1995).

    [6] Tzallas P, Skantzakis E, Kalpouzos C, et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields[J]. Nat Phys, 3, 846-850(2007).

    [7] Mauritsson J, Johnsson P, Gustafsson E, et al. Attosecond pulse trains generated using two color laser fields[J]. Phys Rev Lett, 97, 013001(2006).

    [8] Pfeifer T, Gallmann L, Abel M J, et al. Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field[J]. Opt Lett, 31, 975-977(2006).

    [9] Feng Ximao, Gilbertson S, Mashiko H, et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers[J]. Phys Rev Lett, 103, 183901(2009).

    [10] Gilbertson S, Khan S D, Wu Yi, et al. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers[J]. Phys Rev Lett, 105, 093902(2010).

    [11] Rivas D E, Borot A, Cardenas D E, et al. Next generation driver for attosecond and laser-plasma physics[J]. Sci Rep, 7, 5224(2017).

    [12] Tsakiris G D, Eidmann K, Meyer-ter-Vehn J, et al. Route to intense single attosecond pulses[J]. New J Phys, 8, 19(2006).

    [13] Ma Guangjin, Dallari W, Borot A, et al. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses[J]. Phys Plasmas, 22, 033105(2015).

    [14] Quéré F, Thaury C, Monot P, et al. Coherent wake emission of high-order harmonics from overdense plasmas[J]. Phys Rev Lett, 96, 125004(2006).

    [15] Baeva T, Gordienko S, Pukhov A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma[J]. Phys Rev E, 74, 046404(2006).

    [16] an der Brügge D, Pukhov A. Enhanced relativistic harmonics by electron nanobunching[J]. Phys Plasmas, 17, 033110(2010).

    [17] Lichters R, Meyer-ter-Vehn J, Pukhov A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity[J]. Phys Plasmas, 3, 3425-3437(1996).

    [18] Gordienko S, Pukhov A, Shorokhov O, et al. Relativistic Doppler effect: universal spectra and zeptosecond pulses[J]. Phys Rev Lett, 93, 115002(2004).

    [19] Gonoskov A A, Korzhimanov A V, Kim A V, et al. Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses[J]. Phys Rev E, 84, 046403(2011).

    [20] Vincenti H, Monchocé S, Kahaly S, et al. Optical properties of relativistic plasma mirrors[J]. Nat Commun, 5, 3403(2014).

    [21] Shumakova V, Malevich P, Ališauskas S, et al. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk[J]. Nat Commun, 7, 12877(2016).

    [22] Leshchenko V E, Talbert B K, Lai Yuhang, et al. High-power few-cycle Cr: ZnSe mid-infrared source for attosecond soft X-ray physics[J]. Optica, 7, 981-988(2020).

    [23] Rossi G M, Mainz R E, Yang Yudong, et al. Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science[J]. Nat Photon, 14, 629-635(2020).

    [24] Budriūnas R, Stanislauskas T, Adamonis J, et al. 53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate[J]. Opt Express, 25, 5797-5806(2017).

    [25] Heissler P, Barna A, Mikhailova J M, et al. Multi-μJ harmonic emission energy from laser-driven plasma[J]. Appl Phys B, 118, 195-201(2015).

    [26] Behmke M, an der Brügge D, Rödel C, et al. Controlling the spacing of attosecond pulse trains from relativistic surface plasmas[J]. Phys Rev Lett, 106, 185002(2011).

    [27] Kormin D, Borot A, Ma Guangjin, et al. Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces[J]. Nat Commun, 9, 4992(2018).

    Guangjin Ma, Chunlai Li, Jin He. Attosecond light pulses in simulations using various laser plasmas[J]. High Power Laser and Particle Beams, 2022, 34(3): 031014
    Download Citation