• High Power Laser and Particle Beams
  • Vol. 34, Issue 3, 031014 (2022)
Guangjin Ma1、2, Chunlai Li1、2, and Jin He1、2
Author Affiliations
  • 1Peking University Shenzhen Institute, Shenzhen 518057, China
  • 2Shenzhen SoC Key Laboratory, PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen 518057, China
  • show less
    DOI: 10.11884/HPLPB202234.210297 Cite this Article
    Guangjin Ma, Chunlai Li, Jin He. Attosecond light pulses in simulations using various laser plasmas[J]. High Power Laser and Particle Beams, 2022, 34(3): 031014 Copy Citation Text show less

    Abstract

    The generation of single isolated attosecond light pulses from the interaction of relativistic few-cycle lasers with solid density plasma surfaces is investigated using one dimensional particle-in-cell simulations. The primary subject of the study is the effects of the multi-parameter combinations which uniquely define the laser plasma interactions, on the laser to relativistic high-order harmonic energy conversion efficiencies, and also on the single attosecond light pulse isolation degrees. Here these multi-parameters include laser intensities, incidence angles, plasma scale lengths, etc. The impact of laser-plasma interaction parameters on attosecond light pulse generations is generally complicated. However, there exist an optimal plasma scale length and an optimal incidence angle to efficiently generate high-order harmonics and intense attosecond light pulses. When other parameters are fixed, a moderately intense relativistic laser is more advantageous to realize isolated attosecond light pulses with a broad controlling parameters range. And a larger incidence angle favors a higher isolation degree as well as a broader range of controlling parameters towards the generation of intense isolated attosecond light pulses.
    $ {E_{\rm{i}}}\left[ {t - {{{x_{{\text{ARP}}}}(t)} \mathord{\left/ {\vphantom {{{x_{{\text{ARP}}}}(t)} c}} \right. } c}} \right] + {E_{\rm{r}}}\left[ {t + {{{x_{{\text{ARP}}}}(t)} \mathord{\left/ {\vphantom {{{x_{{\text{ARP}}}}(t)} c}} \right. } c}} \right] = 0 $(1)

    View in Article

    $ I(\omega ) \propto {\omega ^{ - 8/3}}{\left\{ {{A'_{\text{i}}}\left[ {{{\left( {\frac{\omega }{{{\omega _{\text{r}}}}}} \right)}^{2/3}}} \right]} \right\}^2} $(2)

    View in Article

    $ I(\omega ) \propto {\left| {\tilde f(\omega )} \right|^2}{\omega ^{ - 4/3}}{\left\{ {{{A'_{\rm{i}}}}\left[ {{{\left( {\frac{\omega }{{{\omega _{{\rm{rs}}}}}}} \right)}^{2/3}}} \right]} \right\}^2} $(3)

    View in Article

    $ I(\omega ) \propto {\left| {\tilde f(\omega )} \right|^2}{\omega ^{ - 6/5}}{\left\{ {S''\left[ {{{\left( {\frac{\omega }{{{\omega _{{\rm{rs}}}}}}} \right)}^{4/5}}} \right]} \right\}^2} $(4)

    View in Article

    $ {\left| {\tilde f(\omega )} \right|^2}{\text{ = exp}}\left[ { - {{\left( {\frac{\omega }{{{\omega _{{\rm{rf}}}}}}} \right)}^2}} \right] $(5)

    View in Article

    $ I(\omega ) = (q - 1){F_{{\text{las}}}}{\left( {\frac{\omega }{{{\omega _{\rm{L}}}}}} \right)^{ - q}},\;\omega \geqslant {\omega _{\rm{L}}} $(6)

    View in Article

    $ {\eta _{{\text{XUV}}}} = \frac{1}{{{F_{{\text{las}}}}}}\int_{10{\omega _{\rm{L}}}}^{50{\omega _{\rm{L}}}} {I(\omega )\;{\rm{d}}\omega } = \frac{1}{{{{10}^{q - 1}}}} - \frac{1}{{{{50}^{q - 1}}}} $(7)

    View in Article

    $ {Y_{{\text{train}}}} = \int_{10{\omega _{\rm{L}}}}^{50{\omega _{\rm{L}}}} {\int_{ - \infty }^{ - \infty } {I(\omega ,t)\;{\rm{d}}\omega {\rm{d}}t} } $(8)

    View in Article

    $ {Y_{{\text{atto}}}} = \int_{10{\omega _{\rm{L}}}}^{50{\omega _{\rm{L}}}} {\int_{\Delta {t_{{\text{atto}}}}} {I(\omega ,t)\;{\rm{d}}\omega {\rm{d}}t} } $(9)

    View in Article

    $ \frac{{x_{\rm{s}}^{{\text{LAB}}} - x_{\rm{c}}^{{\text{LAB}}}}}{{\lambda _{\rm{L}}^{{\text{LAB}}}}} = \frac{{{L^{{\text{LAB}}}}}}{{\lambda _{\rm{L}}^{{\text{LAB}}}}}\ln \left\{ {\frac{1}{{2{\text{π}} }}\frac{{2{a_{\rm{L}}}{{\cos }^2}\alpha }}{{(1 - \sin \alpha )}}\frac{1}{{{{{L^{{\text{LAB}}}}} \mathord{\left/ {\vphantom {{{L^{{\text{LAB}}}}} {\lambda _{\rm{L}}^{{\text{LAB}}}}}} \right. } {\lambda _{\rm{L}}^{{\text{LAB}}}}}}}} \right\} $(10)

    View in Article

    $ \sin ({x_{\rm{s}}} - t) = \frac{L}{{2{a_{\rm{L}}}{{\cos }^3}\alpha }}\left( {\sin \alpha - \frac{{{\beta _{y}}}}{{1 - {\beta _{x}}}}} \right)\exp \left( {\frac{{{x_{\rm{s}}} - {x_{{\rm{cL}}}}}}{L}} \right) $(11)

    View in Article

    $ \left\{ \begin{array}{l} \dfrac{{{{\rm{d}}} u}}{{{{\rm{d}}} \tau }} = \dfrac{{\left( {{u^2} - 1} \right)\left( {\sin \alpha - u} \right) \pm \dfrac{2}{{{{{{\rm{d}}} \eta } \mathord{\left/ {\vphantom {{{{\rm{d}}} \eta } {{{\rm{d}}} {x_{\rm{s}}}}}} \right. } {{{\rm{d}}} {x_{\rm{s}}}}}}}{{\left[ {1 - {\eta ^2}{{\left( {\sin \alpha - u} \right)}^2}} \right]}^{1/2}}}}{{\eta \left( {{u^2} + 1} \right)}} \hfill \\ \dfrac{{{{\rm{d}}} \eta }}{{{{\rm{d}}} \tau }} = \dfrac{{{u^2} - 1}}{{{u^2} + 1}} \end{array} \right.$(12)

    View in Article

    $ S = 2{\cos ^3}\alpha \frac{{{{\rm{d}}} \eta }}{{{{\rm{d}}} {x_{\rm{s}}}}} = \frac{1}{{{a_{\rm{L}}}}}\exp \left[ {\frac{{{x_{\rm{s}}} - {x_{\rm{cL}}}}}{L}} \right] $(13)

    View in Article

    $ {S^{\max }} = \frac{1}{{2{\text{π}} }}\frac{1}{{{{{L^{{\text{LAB}}}}} \mathord{\left/ {\vphantom {{{L^{{\text{LAB}}}}} {\lambda _{\rm{L}}^{{\text{LAB}}}}}} \right. } {\lambda _{\rm{L}}^{{\text{LAB}}}}}}}\frac{{2{{\cos }^2}\alpha }}{{1 - \sin \alpha }} = \frac{1}{{2{\text{π}} }}\frac{{2(1 + \sin \alpha )}}{{{{{L^{{\text{LAB}}}}} \mathord{\left/ {\vphantom {{{L^{{\text{LAB}}}}} {\lambda _{\rm{L}}^{{\text{LAB}}}}}} \right. } {\lambda _{\rm{L}}^{{\text{LAB}}}}}}} $(14)

    View in Article

    $ \bar S = \frac{{\displaystyle\int_{{\eta ^{\min }}}^{{\eta ^{\max }}} {{\rm{d}}\eta \;} w(\eta )S(\eta )}}{{{\eta ^{\max }} - {\eta ^{\min }}}}\begin{array}{*{20}{c}} {\underline{\underline {\;w(\eta ) = 1\;}} } \\ {} \end{array}\frac{{1 + \sin \alpha }}{{2{\text{π}} \left( {{{{L^{{\text{LAB}}}}} \mathord{\left/ {\vphantom {{{L^{{\text{LAB}}}}} {\lambda _{\rm{L}}^{{\text{LAB}}}}}} \right. } {\lambda _{\rm{L}}^{{\text{LAB}}}}}} \right)}} $(15)

    View in Article

    Guangjin Ma, Chunlai Li, Jin He. Attosecond light pulses in simulations using various laser plasmas[J]. High Power Laser and Particle Beams, 2022, 34(3): 031014
    Download Citation