• Laser & Optoelectronics Progress
  • Vol. 57, Issue 5, 051405 (2020)
Shuai Huang*, Shaoqing Guo, Guohui Zhang, Biao Zhou, Taiqi Yan, Bingqing Chen, and Xuejun Zhang
Author Affiliations
  • 3D Printing Research and Engineering Technology Center, Beijing Institute of Aeronautical Materials, Aero Engine Corporation of China, Beijing 100095, China
  • show less
    DOI: 10.3788/LOP57.051405 Cite this Article Set citation alerts
    Shuai Huang, Shaoqing Guo, Guohui Zhang, Biao Zhou, Taiqi Yan, Bingqing Chen, Xuejun Zhang. Microstructure and Impact Toughness of GH4169 Samples Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(5): 051405 Copy Citation Text show less
    References

    [1] Zhang Y, Gu D D, Shen L D et al[J]. Study on selective laser melting additive manufacturing process of Inconel Ni-based superalloy Electromachining & Mould, 2014, 38-43.

    [2] Gu D, Meiners W, Wissenbach K et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 57, 133-164(2012).

    [3] Li J F, Wei Z Y, Lu B H. Research progress on technology of selective laser melting of titanium and titanium alloys[J]. Laser & Optoelectronics Progress, 55, 011403(2018).

    [4] Xu J G, Chen Y, Chen H et al. Influence of process parameters on forming defects of H13 steel processed by selective laser melting[J]. Laser & Optoelectronics Progress, 55, 041405(2018).

    [5] Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 55, 011402(2018).

    [6] Pan A Q, Zhang L, Wang Z M. Directional solidification microstructure and segregation of SRR99 superalloys by selective laser melting[J]. Laser & Optoelectronics Progress, 54, 101409(2017).

    [7] Bean G E, Witkin D B. McLouth T D, et al. Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting[J]. Additive Manufacturing, 22, 207-215(2018).

    [8] Huang Q Y, Li H K[M]. High temperature alloy(2000).

    [9] Luo H J, Xie J, Cheng J[J]. Analysis and control of grain size of GH4169 alloy turbine disc forging Heavy Casting and Forging, 2010, 17-19.

    [10] Ding T S, Zhang X C, Tu S D et al. Effect of heat treatment on microstructure and low cycle fatigue performance of GH4169 alloy at 650 ℃[J]. Transactions of Materials and Heat Treatment, 37, 69-75(2016).

    [11] Wang H L, Liu B, Liu H P et al. Microstructure and mechanical behavior of nickel based alloy powder GH4169 fabricated by selective laser melting[J]. Hot Working Technology, 44, 90-92, 96(2015).

    [12] Wang X Q, Keya T, Chou K. Build height effect on the Inconel 718 parts fabricated by selective laser melting[J]. Procedia Manufacturing, 5, 1006-1017(2016).

    [13] Liu F, Sun W R, Yang S L et al. Effect of Al on impact strength of GH4169 alloy[J]. Chinese Journal of Materials Research, 22, 230-234(2008).

    [14] Wang P S, Li Q M, Wei X Y et al. Effect of solid solution on grain size and mechanical properties of GH4169 alloy[J]. Hot Working Technology, 47, 245-249(2018).

    [15] Jia Q B. Selective laser melting fabrication of nickel-based superalloys and its composites: process, microstructure and property[D]. Nanjing: Nanjing University of Aeronautics and Astronautics(2015).

    Shuai Huang, Shaoqing Guo, Guohui Zhang, Biao Zhou, Taiqi Yan, Bingqing Chen, Xuejun Zhang. Microstructure and Impact Toughness of GH4169 Samples Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(5): 051405
    Download Citation