• Journal of Semiconductors
  • Vol. 46, Issue 2, 021405 (2025)
Pu Guo, Junyao Zhang, and Jia Huang*
Author Affiliations
  • School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • show less
    DOI: 10.1088/1674-4926/24120017 Cite this Article
    Pu Guo, Junyao Zhang, Jia Huang. Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration[J]. Journal of Semiconductors, 2025, 46(2): 021405 Copy Citation Text show less
    References

    [1] Z Sun, S Kvatinsky, X Si et al. A full spectrum of computing-in-memory technologies. Nat Electron, 6, 823(2023).

    [2] Y van de Burgt, A Melianas, S T Keene et al. Organic electronics for neuromorphic computing. Nat Electron, 1, 386(2018).

    [3] O Krestinskaya, M E Fouda, H Benmeziane et al. Neural architecture search for in-memory computing-based deep learning accelerators. Nat Rev Electr Eng, 1, 374(2024).

    [4] F Aguirre, A Sebastian, M Le Gallo et al. Hardware implementation of memristor-based artificial neural networks. Nat Commun, 15, 1974(2024).

    [5] M A Zidan, J P Strachan, W D Lu. The future of electronics based on memristive systems. Nat Electron, 1, 22(2018).

    [6] J W Chen, Z Zhou, B J Kim et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat Nanotechnol, 18, 882(2023).

    [7] W Q Zhang, B Gao, J S Tang et al. Neuro-inspired computing chips. Nat Electron, 3, 371(2020).

    [8] F C Zhou, Y Chai. Near-sensor and in-sensor computing. Nat Electron, 3, 664(2020).

    [9] Q Q Ren, C Y Zhu, S J Ma et al. Optoelectronic devices for in-sensor computing. Adv Mater, e2407476(2024).

    [10] Z Q Wang, T Q Wan, S J Ma et al. Multidimensional vision sensors for information processing. Nat Nanotechnol, 19, 919(2024).

    [11] Y Wang, L Yin, W Huang et al. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst, 3, 2000099(2021).

    [12] C D Schuman, S R Kulkarni, M Parsa et al. Opportunities for neuromorphic computing algorithms and applications. Nat Comput Sci, 2, 10(2022).

    [13] S W Cho, S M Kwon, Y H Kim et al. Recent progress in transistor-based optoelectronic synapses: From neuromorphic computing to artificial sensory system. Adv Intell Syst, 3, 2000162(2021).

    [14] Q Z Wan, M T Sharbati, J R Erickson et al. Emerging artificial synaptic devices for neuromorphic computing. Adv Mater Technol, 4, 1900037(2019).

    [15] X Wang, Y X Ran, X Q Li et al. Bio-inspired artificial synaptic transistors: Evolution from innovative basic units to system integration. Mater Horiz, 10, 3269(2023).

    [16] Z H He, H G Shen, D K Ye et al. An organic transistor with light intensity-dependent active photoadaptation. Nat Electron, 4, 522(2021).

    [17] Y Choi, S Oh, C Qian et al. Vertical organic synapse expandable to 3D crossbar array. Nat Commun, 11, 4595(2020).

    [18] X B Bu, H Xu, D S Shang et al. Ion-gated transistor: An enabler for sensing and computing integration. Adv Intell Syst, 2, 2000156(2020).

    [19] H L Li, X T Jiang, W B Ye et al. Fully photon modulated heterostructure for neuromorphic computing. Nano Energy, 65, 104000(2019).

    [20] X Y Xiao, J Hu, S Tang et al. Recent advances in halide perovskite memristors: Materials, structures, mechanisms, and applications. Adv Mater Technol, 5, 1900914(2020).

    [21] X G Duan, Z L Cao, K K Gao et al. Memristor-based neuromorphic chips. Adv Mater, 36, 2310704(2024).

    [22] S G Sarwat, B Kersting, T Moraitis et al. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat Nanotechnol, 17, 507(2022).

    [23] B H Jeong, J Park, D Kim et al. Visible light-sensitive artificial photonic synapse. Adv Opt Mater, 12, 2301652(2024).

    [24] J Wang, N Ilyas, Y Ren et al. Technology and integration roadmap for optoelectronic memristor. Adv Mater, 36, e2307393(2024).

    [25] H Bronstein, C B Nielsen, B C Schroeder et al. The role of chemical design in the performance of organic semiconductors. Nat Rev Chem, 4, 66(2020).

    [26] E J Fuller, S T Keene, A Melianas et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 364, 570(2019).

    [27] X J Zhang, W Deng, R F Jia et al. Precise patterning of organic semiconductor crystals for integrated device applications. Small, 15, 1900332(2019).

    [28] W C Wang, L F Chi. Patterned growth of organic semiconductors for ultra-high resolution microelectronics and optoelectronics. Wearable Electron, 1, 91(2024).

    [29] A G Emslie, F T Bonner, L G Peck. Flow of a viscous liquid on a rotating disk. J Appl Phys, 29, 858(1958).

    [30] N Sahu, B Parija, S Panigrahi. Fundamental understanding and modeling of spin coating process: A review. Indian J Phys, 83, 493(2009).

    [31] D D Hao, J Y Zhang, S L Dai et al. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interfaces, 12, 39487(2020).

    [32] D Liu, J Zhang, Q Shi et al. Humidity/oxygen-insensitive organic synaptic transistors based on optical radical effect. Adv Mater, 36, e2305370(2024).

    [33] L L Jiang, H Huang, C Zhang et al. One-step preparation of semiconductor/dielectric bilayer structures for the simulation of flexible bionic photonic synapses. ACS Appl Mater Interfaces, 15, 7227(2023).

    [34] F Xu, C Zhang, X L Zhao et al. Intrinsically stretchable photonic synaptic transistors for retina-like visual image systems. J Mater Chem C, 10, 10586(2022).

    [35] S Y Wang, X L Zhao, Y H Tong et al. Directly spin coating a low-viscosity organic semiconductor solution onto hydrophobic surfaces: Toward high-performance solution-processable organic transistors. Adv Materials Inter, 7, 1901950(2020).

    [36] C Q Wang, Z J Lu, W Deng et al. Precise patterning of single crystal arrays of organic semiconductors by a patterned microchannel dip-coating method for organic field-effect transistors. J Mater Chem C, 9, 5174(2021).

    [37] H Wang, W Deng, L M Huang et al. Precisely patterned growth of ultra-long single-crystalline organic microwire arrays for near-infrared photodetectors. ACS Appl Mater Interfaces, 8, 7912(2016).

    [38] W Deng, X J Zhang, H L Dong et al. Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Mater Today, 24, 17(2019).

    [39] W Deng, Y Lv, X L Zhang et al. High-resolution patterning of organic semiconductor single crystal arrays for high-integration organic field-effect transistors. Mater Today, 40, 82(2020).

    [40] X Z Xu, W Deng, X J Zhang et al. Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano, 13, 5910(2019).

    [41] X Zhang, H Zhang, S L Li et al. Development and application of blade-coating technique in organic solar cells. Nano Res, 16, 11571(2023).

    [42] X L Zhang, W Deng, B Lu et al. Fast deposition of an ultrathin, highly crystalline organic semiconductor film for high-performance transistors. Nanoscale Horiz, 5, 1096(2020).

    [43] K Kim, K Nam, X L Li et al. Programmed design of highly crystalline organic semiconductor patterns with uniaxial alignment via blade coating for high-performance organic field-effect transistors. ACS Appl Mater Interfaces, 11, 42403(2019).

    [44] J L Shi, J S Jie, W Deng et al. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv Mater, 34, 2200380(2022).

    [45] X X Li, A Sabir, X Y Zhang et al. Highly stretchable and oriented wafer-scale semiconductor films for organic phototransistor arrays. ACS Appl Mater Interfaces, 16, 36678(2024).

    [46] H Y Hong, Z X Yang, Y L Ye et al. Highly uniform organic nanowire synaptic arrays with excellent performance for associative memory. Chem Eng J, 492, 152244(2024).

    [47] Z H Shen, Z X Yang, Y Q Zhou et al. Ultralow-power consumption photonic synapse transistors based on organic array films fabricated using a particular prepatterned-guided crystallizing strategy. J Mater Chem C, 11, 3213(2023).

    [48] P Guo, J Y Zhang, H Q Pu et al. Wafer-scale photolithographic fabrication of organic synaptic transistor arrays. Device, 2, 100409(2024).

    [49] S L Dai, X H Wu, D P Liu et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces, 10, 21472(2018).

    [50] C Zhang, F Xu, X L Zhao et al. Natural polyelectrolyte-based ultraflexible photoelectric synaptic transistors for hemispherical high-sensitive neuromorphic imaging system. Nano Energy, 95, 107001(2022).

    [51] X E Liu, E K Lee, D Y Kim et al. Flexible organic phototransistor array with enhanced responsivity via metal-ligand charge transfer. ACS Appl Mater Interfaces, 8, 7291(2016).

    [52] H T Guo, J Guo, Y J Wang et al. An organic optoelectronic synapse with multilevel memory enabled by gate modulation. ACS Appl Mater Interfaces, 16, 66948(2024).

    [53] S Jang, S Jang, E H Lee et al. Ultrathin conformable organic artificial synapse for wearable intelligent device applications. ACS Appl Mater Interfaces, 11, 1071(2019).

    [54] T Jiang, Y R Wang, Y S Zheng et al. Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection. Nat Commun, 14, 2281(2023).

    [55] Y Kim, C X Zhu, W Y Lee et al. A hemispherical image sensor array fabricated with organic photomemory transistors. Adv Mater, 35, e2203541(2023).

    [56] T Sakorikar, N Mihaliak, F Krisnadi et al. A guide to printed stretchable conductors. Chem Rev, 124, 860(2024).

    [57] K Liang, R Wang, H Ren et al. Printable coffee-ring structures for highly uniform all-oxide optoelectronic synaptic transistors. Adv Opt Mater, 10, 2201754(2022).

    [58] N Z Sui, Y X Ji, M Li et al. Photoprogrammed multifunctional optoelectronic synaptic transistor arrays based on photosensitive polymer-sorted semiconducting single-walled carbon nanotubes for image recognition. Adv Sci, 11, e2401794(2024).

    [59] Q Q Shi, D P Liu, D D Hao et al. Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy, 87, 106197(2021).

    [60] S M Duan, X Gao, Y Wang et al. Scalable fabrication of highly crystalline organic semiconductor thin film by channel-restricted screen printing toward the low-cost fabrication of high-performance transistor arrays. Adv Mater, 31, e1807975(2019).

    [61] Q Z Liu, Y H Liu, J Li et al. Fully printed all-solid-state organic flexible artificial synapse for neuromorphic computing. ACS Appl Mater Interfaces, 11, 16749(2019).

    [62] J Kwon, Y Takeda, K Fukuda et al. Three-dimensional, inkjet-printed organic transistors and integrated circuits with 100% yield, high uniformity, and long-term stability. ACS Nano, 10, 10324(2016).

    [63] Y Fang, X M Wu, S Q Lan et al. Inkjet-printed vertical organic field-effect transistor arrays and their image sensors. ACS Appl Mater Interfaces, 10, 30587(2018).

    [64] H L Wang, Q Zhao, Z J Ni et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater, 30, e1803961(2018).

    [65] X L Zhao, S Y Wang, Y P Ni et al. High-performance full-photolithographic top-contact conformable organic transistors for soft electronics. Adv Sci, 8, 2004050(2021).

    [66] M J Kim, M Lee, H Min et al. Universal three-dimensional crosslinker for all-photopatterned electronics. Nat Commun, 11, 1520(2020).

    [67] F Kahle, C Saller, A Köhler et al. Crosslinked semiconductor polymers for photovoltaic applications. Adv Energy Mater, 7, 1700306(2017).

    [68] M J Kim, H S Ryu, Y Y Choi et al. Completely foldable electronics based on homojunction polymer transistors and logics. Sci Adv, 7, eabg8169(2021).

    [69] Y Wu, S Dai, X Liu et al. Optical microlithography of perovskite quantum dots/organic semiconductor heterojunctions for neuromorphic photosensors. Adv Funct Mater, 34, 175(2024).

    [70] Y Q Zheng, Y X Liu, D L Zhong et al. Monolithic optical microlithography of high-density elastic circuits. Science, 373, 88(2021).

    [71] B H Wang, W Huang, S Lee et al. Foundry-compatible high-resolution patterning of vertically phase-separated semiconducting films for ultraflexible organic electronics. Nat Commun, 12, 4937(2021).

    [72] H W Park, K Y Choi, J Shin et al. Universal route to impart orthogonality to polymer semiconductors for sub-micrometer tandem electronics. Adv Mater, 31, 1901400(2019).

    [73] J Freudenberg, D Jänsch, F Hinkel et al. Immobilization strategies for organic semiconducting conjugated polymers. Chem Rev, 118, 5598(2018).

    [74] R Z Chen, X J Wang, X Li et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Sci Adv, 7, eabg0659(2021).

    [75] R Z Chen, Y K Yan, X J Wang et al. Patterning an erosion-free polymeric semiconductor channel for reliable all-photolithography organic electronics. J Phys Chem Lett, 13, 7673(2022).

    [76] S Zhang, R Z Chen, D R Kong et al. Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors. Nat Nanotechnol, 19, 1323(2024).

    [77] C Y Wang, Y S Bian, K Liu et al. Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat Commun, 15, 3123(2024).

    [78] K Chen, H Hu, I Song et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat Photonics, 17, 629(2023).

    [79] S L Dai, Y H Dai, Z X Zhao et al. Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter, 5, 3375(2022).

    [80] P Guo, J Y Zhang, D P Liu et al. Optoelectronic synaptic transistors based on solution-processable organic semiconductors and CsPbCl3 quantum dots for visual nociceptor simulation and neuromorphic computing. ACS Appl Mater Interfaces, 15, 51483(2023).

    [81] R Z Wang, P Y Chen, D D Hao et al. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl Mater Interfaces, 13, 43144(2021).

    [82] Y Lee, H L Park, Y Kim et al. Organic electronic synapses with low energy consumption. Joule, 5, 794(2021).

    Pu Guo, Junyao Zhang, Jia Huang. Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration[J]. Journal of Semiconductors, 2025, 46(2): 021405
    Download Citation