• Journal of Innovative Optical Health Sciences
  • Vol. 9, Issue 4, 1630006 (2016)
Wenkai Fang* and Yanchun Wei
Author Affiliations
  • Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631, P. R. China
  • show less
    DOI: 10.1142/s1793545816300068 Cite this Article
    Wenkai Fang, Yanchun Wei. Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy[J]. Journal of Innovative Optical Health Sciences, 2016, 9(4): 1630006 Copy Citation Text show less
    References

    [1] B. N. Giepmans, S. R. Adams, M. H. Ellisman, R. Y. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217– 224 (2006).

    [2] T. Terai, T. Nagano, Fluorescent probes for bioimaging applications, Current Opin. Chem. Biol. 12, 515–521 (2008).

    [3] M. Beija, C. A. Afonso, J. M. Martinho, "Synthesis and applications of rhodamine derivatives as fluorescent probes," Chem. Soc. Rev. 38, 2410–2433 (2009).

    [4] S. V. Eliseeva, J.-C. G. Bünzli, "Lanthanide luminescence for functional materials and bio-sciences," Chem. Soc. Rev. 39, 189–227 (2010).

    [5] H. Liu, F. Zhan, F. Liu, M. Zhu, X. Zhou, D. Xing, "Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform," Biosens. Bioelectron. 62, 38–46 (2014).

    [6] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li et al., "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538–544 (2005).

    [7] Y. Liao, X. Zhou, D. Xing, "Quantum dots and graphene oxide fluorescent switch based multivariate testing strategy for reliable detection of listeria monocytogenes," ACS Appl. Mater. Interfaces 6, 9988–9996 (2014).

    [8] Y. Liu, D. Tu, H. Zhu, E. Ma, X. Chen, "Lanthanide-doped luminescent nano-bioprobes: From fundamentals to biodetection," Nanoscale 5, 1369–1384 (2013).

    [9] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, "Nanocarriers as an emerging platform for cancer therapy," Nat. Nanotechnol. 2, 751–760 (2007).

    [10] L. Wen, W. Ding, S. Yang, D. Xing, "Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes," Biomaterials 75, 163–173 (2016).

    [11] H. Qin, T. Zhou, S. Yang, D. Xing, "Fluorescence quenching nanoprobes dedicated to in vivo photoacoustic imaging and high-efficient tumor therapy in deep-seated tissue," Small 11, 2675–2686 (2015).

    [12] H. W. Leverenz, F. Urbach, "Introduction to the Luminescence of Solids," Phys. Today 3, 32–33 (2009).

    [13] F. Auzel, "Compteur quantique par transfert denergie entre deux ions de terres rares dans un tungstate mixte ET dans un verre," C. R. Hebd. Seances Acad. Sci. B 262, 1016 (1966).

    [14] T. Forster, Naturwiss 33, 166 (1946), Ann. Phys. 2, 55 (1948).

    [15] D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836–850 (1953).

    [16] F. E. Auzel, "Materials and devices using doublepumped- phosphors with energy transfer," Proc. IEEE 61, 758–786 (1973).

    [17] V. Ovsyankin, P. Feofilov, "Cooperative optical phenomena in condensed media," Phys.-Usp. 15, 354 (1972).

    [18] E. Nakazawa, S. Shionoya, "Cooperative luminescence in YbPO4," Phys. Rev. Lett. 25, 1710 (1970).

    [19] J. S. Chivian, W. Case, D. Eden, "The photon avalanche: A new phenomenon in Pr3t-based infrared quantum counters," Appl. Phys. Lett. 35, 124–125 (1979).

    [20] S. Sivakumar, P. R. Diamente, F. C. van Veggel, "Silica-coated Ln3t-doped LaF3 nanoparticles as robust down-and upconverting biolabels," Chemistr 12, 5878–5884 (2006).

    [21] H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, S. Xia, "Visible upconversion in rare earth iondoped Gd2O3 nanocrystals," J. Phys. Chem. B 108, 19205–19209 (2004).

    [22] W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan et al., "Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging," J. Mater. Chem. 22, 6974–6981 (2012).

    [23] F. Evanics, P. Diamente, F. Van Veggel, G. Stanisz, R. Prosser, "Water-soluble GdF3 and GdF3/LaF3 nanoparticles physical characterization and NMR relaxation properties," Chem. Mater. 18, 2499– 2505 (2006).

    [24] G. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li et al., "(α-NaYbF4:Tm3t)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging," ACS Nano 6, 8280–8287 (2012).

    [25] F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, M. Bettinelli, "Significance of Yb3t concentration on the upconversion mechanisms in codoped Y2O3: Er3t, Yb3t nanocrystals," J. Appl. Phys. 96, 661–667 (2004).

    [26] G. Chen, Y. Zhang, G. Somesfalean, Z. Zhang, Q. Sun, F. Wang, "Two-color upconversion in rareearth- ion-doped ZrO2 nanocrystals," Appl. Phys. Lett. 89, 3105 (2006).

    [27] X. Luo, W. Cao, "Blue, green, red upconversion luminescence and optical characteristics of rare earth doped rare earth oxide and oxysulfide," Sci. China Ser. B: Chem. 50, 505–513 (2007).

    [28] Y. Sun, H. Liu, X. Wang, X. Kong, H. Zhang, "Optical spectroscopy and visible upconversion studies of YVO4: Er3t nanocrystals synthesized by a hydrothermal process," Chem. Mater. 18, 2726– 2732 (2006).

    [29] J. Liu, N. Li, R. Wu, Y. Zhao, Q. Zhan, S. He, "Sub-5-nm lanthanide-doped ZrO2@NaYF4 nanodots as efficient upconverting probes for rapid scanning microscopy and aptamer-mediated bioimaging," Opt. Mater. Express 5, 1759–1771 (2015).

    [30] M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu et al., "Immunolabeling ans NIRexcited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles," Acs Nano 3, 1580–1586 (2009).

    [31] B. Tang, J. Ge, C. Wu, L. Zhuo, J. Niu, Z. Chen et al., "Sol–solvothermal synthesis and microwave evolution of La(OH)3 nanorods to La2O3 nanorods," Nanotechnology 15, 1273 (2004).

    [32] R. I. Walton, "Subcritical solvothermal synthesis of condensed inorganic materials," Chem. Soc. Rev. 31, 230–238 (2002).

    [33] Z. Chen, Q. Tian, Y. Song, J. Yang, J. Hu, "PEGmediated solvothermal synthesis of NaYF4: Yb/Er superstructures with efficient upconversion luminescence," J. Alloys Comp. 506, L17–L21 (2010).

    [34] T. He, W. Wei, L. Ma, R. Chen, S. Wu, H. Zhang et al., "Mechanism studies on the superior optical limiting observed in graphene oxide covalently functionalized with upconversion NaYF4:Yb3t/ Er3t nanoparticles," Small 8, 2163–2168 (2012).

    [35] Z. Li, Y. Zhang, "An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence," Nanotechnology 19, 345606 (2008).

    [36] G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan et al., "Mn2t Dopant-controlled synthesis of NaYF4: Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery," Adv. Mater. 24, 1226–1231 (2012).

    [37] H.-X. Mai, Y.-W. Zhang, L.-D. Sun, C.-H. Yan, "Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/shell-structured nanocrystals," J. Phys. Chem. C 111, 13721–13729 (2007).

    [38] H.-X. Mai, Y.-W. Zhang, R. Si, Z.-G. Yan, L.-d. Sun, L.-P. You et al., "High-quality sodium rareearth fluoride nanocrystals: controlled synthesis and optical properties," J. Am. Chem. Soc. 128, 6426–6436 (2006).

    [39] X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, X. Liu, "Mechanistic investigation of photon upconversion in Nd3t-sensitized core-shell nanoparticles," J. Am. Chem. Soc. 135, 12608–12611 (2013).

    [40] F. Wang, R. Deng, X. Liu, "Preparation of coreshell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversionbased probes," Nat. Protoc. 9, 1634–1644 (2014).

    [41] F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, J. A. Capobianco, "The active-core/active- shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles," Adv. Funct. Mater. 19, 2924–2929 (2009).

    [42] L. Cheng, K. Yang, Y. Li, X. Zeng, M. Shao, S.-T. Lee et al., "Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy," Biomaterials 33, 2215–2222 (2012).

    [43] L. Cheng, K. Yang, M. Shao, S.-T. Lee, Z. Liu, "Multicolor in vivo imaging of upconversion nanoparticles with emissions tuned by luminescence resonance energy transfer," J. Phys. Chem. C 115, 2686–2692 (2011).

    [44] L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, Z. Liu, "Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles," Nano Res. 3, 722–732 (2010).

    [45] A. Punjabi, X. Wu, A. Tokatli-Apollon, M. El- Rifai, H. Lee, Y. Zhang et al., "Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy," ACS Nano 8, 10621– 10630 (2014).

    [46] H. Xing, S. Zhang, W. Bu, X. Zheng, L. Wang, Q. Xiao et al., "Ultrasmall NaGdF4 nanodots for efficient MR angiography and atherosclerotic plaque imaging," Adv. Mater. 26, 3867–3872 (2014).

    [47] F. Zhang, Y. Shi, X. Sun, D. Zhao, G. D. Stucky, "Formation of hollow upconversion rare-earth fluoride nanospheres: Nanoscale kirkendall effect during ion exchange," Chem. Mater. 21, 5237– 5243 (2009).

    [48] D. Yang, X. Kang, Y. Dai, Z. Hou, Z. Cheng, C. Li et al., "Hollow structured upconversion luminescent NaYF4: Yb3t, Er3t nanospheres for cell imaging and targeted anti-cancer drug delivery," Biomaterials 34, 1601–1612 (2013).

    [49] Z. Xu, Ma Pa, C. Li, Z. Hou, X. Zhai, S. Huang et al., "Monodisperse core-shell structured upconversion Yb(OH)CO3@YbPO4:Er3t hollow spheres as drug carriers," Biomaterials 32, 4161– 4173 (2011).

    [50] M. K. Devaraju, S. Yin, T. Sato, "A fast and template free synthesis of Tb:Y2O3 hollow microspheres via supercritical solvothermal method," Cryst. Growth Des. 9, 2944–2949 (2009).

    [51] G. Tian, L. Duan, X. Zhang, W. Yin, L. Yan, L. Zhou et al., "One-pot template-free synthesis of NaYF4 upconversion hollow nanospheres for bioimaging and drug delivery," Chem. 9, 1655–1662 (2014).

    [52] G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. gren, P. N. Prasad, "Ultrasmall monodisperse NaYF4:Yb3t/Tm3t nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence," ACS Nano 4, 3163–3168 (2010).

    [53] K. Liu, X. Liu, Q. Zeng, Y. Zhang, L. Tu, T. Liu et al., "Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells," ACS Nano 6, 4054–4062 (2012).

    [54] G.-S. Yi, G.-M. Chow, "Colloidal LaF3:Yb, Er, LaF3:Yb, Ho and LaF3:Yb, Tm nanocrystals with multicolor upconversion fluorescence," J. Mater. Chem. 15, 4460–4464 (2005).

    [55] M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, "High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3tand Yb3t doped fluoride nanophosphors," Nano Lett. 8, 3834–3838 (2008).

    [56] Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.- C. Zhou, C.-H. Yan, "Nd3t-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect," ACS Nano 7, 7200–7206 (2013).

    [57] Q. Zhan, X. Zhang, Y. Zhao, J. Liu, S. He, "Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod," Laser Photonics Rev. 9, 479–487 (2015).

    [58] W. Park, D. Lu, S. Ahn, "Plasmon enhancement of luminescence upconversion," Chem. Soc. Rev. 44, 2940–2962 (2015).

    [59] G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. gren, P. N. Prasad, "Monodisperse NaYbF4: Tm3t/NaGdF4 core/shell nanocrystals with nearinfrared to near-infrared upconversion photoluminescence and magnetic resonance properties," Nanoscale 3, 2003–2008 (2011).

    [60] Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao et al., "Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3t-sensitized nanoparticles," Adv. Mater. 26, 2831–2837 (2014).

    [61] G. Chen, H. Qiu, P. N. Prasad, X. Chen, "Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics," Chem. Rev. 114, 5161–5214 (2014).

    [62] Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang et al., "Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels," J. Am. Chem. Soc. 130, 3023– 3029 (2008).

    [63] H. P. Zhou, C. H. Xu, W. Sun, C. H. Yan, "Clean and flexible modification strategy for carboxyl/aldehyde- functionalized upconversion nanoparticles and their optical applications," Adv. Funct. Mater. 19, 3892–3900 (2009).

    [64] G. S. Yi, G. M. Chow, "Synthesis of hexagonalphase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence," Adv. Funct. Mater. 16, 2324–2329 (2006).

    [65] T. Cao, Y. Yang, Y. Gao, J. Zhou, Z. Li, F. Li, "High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging," Biomaterials 32, 2959– 2968 (2011).

    [66] J. Zhou, L. Yao, C. Li, F. Li, "A versatile fabrication of upconversion nanophosphors with functional- surface tunable ligands," J. Mater. Chem. 20, 8078–8085 (2010).

    [67] L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao et al., "Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles," Angew. Chem. Int. Ed. Engl. 44, 6054–6057 (2005).

    [68] N. Bogdan, F. Vetrone, R. Roy, J. A. Capobianco, "Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition," J. Mater. Chem. 20, 7543–7550 (2010).

    [69] C.-F. Chan, M.-K. Tsang, H. Li, R. Lan, F. L. Chadbourne, W.-L. Chan et al., "Bifunctional upconverting lanthanide nanoparticles for selective in vitro imaging and inhibition of cyclin D as anticancer agents," J. Mater. Chem. B 2, 84–91 (2014).

    [70] L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, F. Li, "High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors," Anal. Chem. 81, 8687–8694 (2009).

    [71] T. Zako, H. Nagata, N. Terada, A. Utsumi, M. Sakono, M. Yohda et al., "Cyclic RGD peptidelabeled upconversion nanophosphors for tumor cell-targeted imaging," Biochem. Biophys. Res. Commun. 381, 545–548 (2009).

    [72] J. Zhong, L. Wen, S. Yang, L. Xiang, Q. Chen, D. Xing, "Imaging-guided high-efficient photoacoustic tumor therapy with targeting gold nanorods," Nanomedicine (2015).

    [73] L.-Q. Xiong, Z.-G. Chen, M.-X. Yu, F.-Y. Li, C. Liu, C.-H. Huang, "Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors," Biomaterials 30, 5592–5600 (2009).

    [74] S. Jiang, Y. Zhang, K. M. Lim, E. K. Sim, L. Ye, "NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA," Nanomedicine 11, 1499–1509 (2015).

    [75] A. Zhou, Y. Wei, B. Wu, Q. Chen, D. Xing, "Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy," Mol. Pharm. 9, 1580–1589 (2012).

    [76] S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin et al., "Non-blinking and photostable upconverted luminescence from single lanthanide- doped nanocrystals," Proc. Nat. Acad. Sci. 106, 10917–10921 (2009).

    [77] Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu et al., "Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent," Adv. Mater. 21, 4467 (2009).

    [78] Y. Wei, Q. Chen, B. Wu, A. Zhou, D. Xing, "Highsensitivity in vivo imaging for tumors using a spectral up-conversion nanoparticle NaYF4: Yb3t, Er3t in cooperation with a microtubulin inhibitor," Nanoscale 4, 3901–3909 (2012).

    [79] J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, S. He, "Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4: Er3t/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW," Biomed. Opt. Express 6, 1857–1866 (2015).

    [80] N. J. Johnson, W. Oakden, G. J. Stanisz, R. Scott Prosser, F. C. van Veggel, "Size-tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement," Chem. Mater. 23, 3714–3722 (2011).

    [81] Y. Hou, R. Qiao, F. Fang, X. Wang, C. Dong, K. Liu et al., "NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo," ACS Nano 7, 330–338 (2012).

    [82] K. A. Abel, J.-C. Boyer, Veggel FCv, "Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure," J. Am. Chem. Soc. 131, 14644–14645 (2009).

    [83] Y. Deng, H. Wang, W. Gu, S. Li, N. Xiao, C. Shao et al., "Ho3t doped NaGdF4 nanoparticles as MRI/optical probes for brain glioma imaging," J. Mater. Chem. B 2, 1521–1529 (2014).

    [84] H. Guo, Z. Li, H. Qian, Y. Hu, I. N. Muhammad, "Seed-mediated synthesis of NaYF4:Yb, Er/ NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity," Nanotechnology 21, 125602 (2010).

    [85] H.-T. Wong, F. Vetrone, R. Naccache, H. L. W. Chan, J. Hao, J. A. Capobianco, "Water dispersible ultra-small multifunctional KGdF4: Tm3t, Yb3t nanoparticles with near-infrared to near-infrared upconversion," J. Mater. Chem. 21, 16589– 16596 (2011).

    [86] G. K. Das, B. C. Heng, S.-C. Ng, T. White, J. S. C. Loo, L. D'Silva et al., "Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging," Langmuir 26, 8959–8965 (2010).

    [87] L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan et al., "Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging," J. Mater. Chem. 22, 966–974 (2012).

    [88] X. Kang, D. Yang, Y. Dai, M. Shang, Z. Cheng, X. Zhang et al., "Poly (acrylic acid) modified lanthanide- doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release," Nanoscale 5, 253–261 (2013).

    [89] M. L. Debasu, D. Ananias, S. L. Pinho, C. F. Geraldes, L. D. Carlos, J. Rocha, "(Gd, Yb, Tb) PO4 up-conversion nanocrystals for bimodal luminescence- MR imaging," Nanoscale 4, 5154–5162 (2012).

    [90] S. Zeng, J. Xiao, Q. Yang, J. Hao, "Bi-functional NaLuF4:Gd3t/Yb3t/Tm3t nanocrystals: Structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties," J. Mater. Chem. 22, 9870–9874 (2012).

    [91] D. Chen, Y. Yu, F. Huang, H. Lin, P. Huang, A. Yang et al., "Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence," J. Mater. Chem. 22, 2632–2640 (2012).

    [92] R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, P. N. Prasad, "Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals," Adv. Funct. Mater. 19, 853–859 (2009).

    [93] C.-C. Huang, W. Huang, C.-H. Su, C.-N. Feng, W.-S. Kuo, C.-S. Yeh, "A general approach to silicate nanoshells: Gadolinium silicate and gadolinium silicate: Europium nanoshells for dual-modality optical and MR imaging," Chem. Commun. 23, 3360–3362 (2009).

    [94] G. Ren, S. Zeng, J. Hao, "Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods," J. Phys. Chem. C 115, 20141– 20147 (2011).

    [95] Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang et al., "18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly," Acs Nano 5, 3146–3157 (2011).

    [96] A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, F. Li, "Gd3t complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance," Biomaterials 33, 5394–5405 (2012).

    [97] J. Shen, L.-D. Sun, Y.-W. Zhang, C.-H. Yan, "Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb, Er hetero-nanoparticles via a crosslinker anchoring strategy," Chem. Commun. 46, 5731–5733 (2010).

    [98] F. Chen, S. Zhang, W. Bu, X. Liu, Y. Chen, Q. He et al., "A neckformation strategy for an antiquenching magnetic/upconversion fluorescent bimodal cancer probe," Chemistry 16, 11254–112560 (2010).

    [99] Y. Sun, M. Yu, S. Liang, Y. Zhang, C. Li, T. Mou et al., "Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node," Biomaterials 32, 2999– 3007 (2011).

    [100] Y. Sun, X. Zhu, J. Peng, F. Li, "Core–shell lanthanide upconversion nanophosphors as fourmodal probes for tumor angiogenesis imaging," ACS Nano 7, 11290–11300 (2013).

    [101] J. Peng, Y. Sun, Q. Liu, Y. Yang, J. Zhou, W. Feng et al., "Upconversion nanoparticles dramatically promote plant growth without toxicity," Nano Res. 5, 770–782 (2012).

    [102] T. Cao, Y. Yang, Y. Sun, Y. Wu, Y. Gao, W. Feng et al., "Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles," Biomaterials 34, 7127–7134 (2013).

    [103] J. Peng, Y. Sun, L. Zhao, Y. Wu, W. Feng, Y. Gao et al., "Polyphosphoric acid capping radioactive/ upconverting NaLuF4:Yb, Tm, 153Sm nanoparticles for blood pool imaging in vivo," Biomaterials 34, 9535–9544 (2013).

    [104] Y. Sun, Q. Liu, J. Peng, W. Feng, Y. Zhang, P. Yang et al., "Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking," Biomaterials 34, 2289–2295 (2013).

    [105] M. He, P. Huang, C. Zhang, H. Hu, C. Bao, G. Gao et al., "Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging," Adv. Funct. Mater. 21, 4470–4477 (2011).

    [106] Y. Liu, K. Ai, J. Liu, Q. Yuan, Y. He, L. Lu, "A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging," Angew. Chem. Int. Ed. Engl. 51, 1437–1442 (2012).

    [107] H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang et al., "A NaYbF4: Tm3t nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging," Biomaterials 33, 5384–5393 (2012).

    [108] L. Cheng, K. Yang, Y. Li, J. Chen, C. Wang, M. Shao et al., "Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy," Angew. Chem. Int. Ed. Engl. 123, 7523–7528 (2011).

    [109] H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen et al., "Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging," Biomaterials 33, 1079–1089 (2012).

    [110] Q. Xiao, W. Bu, Q. Ren, S. Zhang, H. Xing, F. Chen et al., "Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging," Biomaterials 33, 7530–7539 (2012).

    [111] G. Zhang, Y. Liu, Q. Yuan, C. Zong, J. Liu, L. Lu, "Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties," Nanoscale 3, 4365–4371 (2011).

    [112] J.-W. Shen, C.-X. Yang, L.-X. Dong, H.-R. Sun, K. Gao, X.-P. Yan, "Incorporation of computed tomography and magnetic resonance imaging function into NaYF4:Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging," Analy. Chem. 85, 12166–12172 (2013).

    [113] Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, Y. Zhao, "Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications," Adv. Mater. 25, 3758–3779 (2013).

    [114] G. Tian, X. Zhang, Z. Gu, Y. Zhao, "Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy," Adv. Mater. 27, 7692–7712 (2015).

    [115] A. Zhou, Y. Wei, Q. Chen, D. Xing, "In vivo nearinfrared photodynamic therapy based on targeted upconversion nanoparticles," J. Biomed. Nanotechnol. 11, 2003–2010 (2015).

    [116] H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, Y. Zhang, "Mesoporous-Silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy," Small 5, 2285–2290 (2009).

    [117] B. Ungun, R. K. Prud'Homme, S. J. Budijon, J. Shan, S. F. Lim, Y. Ju et al., "Nanofabricated upconversion nanoparticles for photodynamic therapy," Opt. Express 17, 80–86 (2009).

    [118] P. Zhang, W. Steelant, M. Kumar, M. Scholfield, "Versatile photosensitizers for photodynamic therapy at infrared excitation," J. Am. Chem. Soc. 129, 4526–4527 (2007).

    [119] Y. Guo, M. Kumar, P. Zhang, "Nanoparticle-based photosensitizers under CW infrared excitation," Chem. Mater. 19, 6071–6072 (2007).

    [120] J. Shan, S. J. Budijono, G. Hu, N. Yao, Y. Kang, Y. Ju et al., "Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy," Adv. Funct. Mater. 21, 2488–2495 (2011).

    [121] G. Tian, W. Ren, L. Yan, S. Jian, Z. Gu, L. Zhou et al., "Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under nearinfrared excitation," Small 9, 1929–1938 (2013).

    [122] S. Cui, D. Yin, Y. Chen, Y. Di, H. Chen, Y. Ma et al., "In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct," ACS Nano 7, 676– 688 (2012).

    [123] F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, "Upconversion nanoparticles in biological labeling, imaging, and therapy," Analyst 135, 1839–1854 (2010).

    [124] M. E. Gindy, R. K. Prud'homme, "Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy," Expert Opin Drug 6, 865–878 (2009).

    [125] C. Wang, L. Cheng, Z. Liu, "Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy," Biomaterials 32, 1110–1120 (2011).

    [126] N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, Y. Zhang, "In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers," Nat. Med. 18, 1580–1585 (2012).

    [127] C. Wang, H. Tao, L. Cheng, Z. Liu, "Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles," Biomaterials 32, 6145–6154 (2011).

    [128] Z. Zhao, Y. Han, C. Lin, D. Hu, F. Wang, X. Chen et al., "Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells," Chemistry. 7, 830–837 (2012).

    [129] B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai et al., "Multifunctional NaYF4:Yb3t, Er3t@Ag core/ shell nanocomposites: Integration of upconversion imaging and photothermal therapy," J. Mater. Chem. 21, 6193–6200 (2011).

    [130] Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen et al., "A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy," J. Am. Chem. Soc. 135, 13041–13048 (2013).

    [131] H. Xu, L. Cheng, C. Wang, X. Ma, Y. Li, Z. Liu, "Polymer encapsulated upconversion nanoparticle/ iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery," Biomaterials 32, 9364–9373 (2011).

    [132] Z. Hou, C. Li, P. Ma, G. Li, Z. Cheng, C. Peng et al., "Electrospinning preparation and drug-delivery properties of an up-conversion luminescent porous NaYF4:Yb3t, Er3t@Silica fiber nanocomposite," Adv. Funct. Mater. 21, 2356–2365 (2011).

    [133] Z. Xu, C. Li, Z. Hou, D. Yang, X. Kang, J. Lin, "Facile synthesis of an up-conversion luminescent and mesoporous Gd2O3:Er3t@nSiO2@mSiO2 nanocomposite as a drug carrier," Nanoscale 3, 661–667 (2011).

    [134] J. V. Garcia, J. Yang, D. Shen, C. Yao, X. Li, R. Wang et al., "NIR-triggered release of caged nitric oxide using upconverting nanostructured materials," Small 8, 3800–3805 (2012).

    [135] P. T. Burks, J. V. Garcia, R. GonzalezIrias, J. T. Tillman, M. Niu, A. A. Mikhailovsky et al., "Nitric oxide releasing materials triggered by near-infrared excitation through tissue filters," J. Am. Chem. Soc. 135, 18145–18152 (2013).

    [136] X. Zhang, G. Tian, W. Yin, L. Wang, X. Zheng, L. Yan et al., "Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy," Adv. Funct. Mater. 25, 3049–3056 (2015).

    [137] S. Jiang, Y. Zhang, "Upconversion nanoparticlebased FRET system for study of siRNA in live cells," Langmuir 26, 6689–6694 (2010).

    [138] M. K.G. Jayakumar, N. M. Idris, Y. Zhang, "Remote activation of biomolecules in deep tissues usingnearinfrared- to-UV upconversion nanotransducers," Proc. Nat. Acad. Sci. U.S.A. 109, 8483–8488 (2012).

    [139] T. Zhou, X. Zhou, D. Xing, "Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier," Biomaterials 35, 4185–4194 (2014).

    [140] R. A. Jalil, Y. Zhang, "Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals," Biomaterials 29, 4122–4128 (2008).

    [141] J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, F. Li, "Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties," Biomaterials 31, 3287–3295 (2010).

    Wenkai Fang, Yanchun Wei. Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy[J]. Journal of Innovative Optical Health Sciences, 2016, 9(4): 1630006
    Download Citation