• Acta Optica Sinica
  • Vol. 34, Issue 11, 1114003 (2014)
Hu Miao1、*, Zhang Fei1, Zhang Xiang2, Zheng Yaoyuan1, Sun Xiao1, Xu Yaxi1, Xu Weizhong1, Ge Jianhong2, and Xiang Zhen2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201434.1114003 Cite this Article Set citation alerts
    Hu Miao, Zhang Fei, Zhang Xiang, Zheng Yaoyuan, Sun Xiao, Xu Yaxi, Xu Weizhong, Ge Jianhong, Xiang Zhen. Amplification of Dual-Frequency Laser for Photonic Millimeter-Wave Signal Generation[J]. Acta Optica Sinica, 2014, 34(11): 1114003 Copy Citation Text show less
    References

    [1] Bo Guangyu, Liu Dong, Wang Bangxin, et al.. Two-wavelength polarization airborne lidar for observation of aerosol and cloud [J]. Chinese J Lasers, 2012, 39(10): 1014002.

    [2] Chen Qianghua, Luo Huifu, Wang Sumei, et al.. Mesurement of air refractive index based on surface plasmon resonance and phase detection by dual-frequency laser interferometry [J]. Chinesee J Lasers, 2013, 40(1): 0108001.

    [3] Zhen Zhiwei, Lu Shunbin, Li Yin, et al.. Optical generation of high-power 0.1-THz continuous wave by external modulation [J]. Chin Opt Lett, 2012, 10(10): 100605.

    [4] Zhao Mingbo, He Jun, Fu Qiang. Simulation modeling and analysis of full-waveform ladar signatures [J]. Acta Optica Sinica, 2012, 32(6): 0628002.

    [5] D G Smith, A Cooper, E P Goodwin, et al.. Light-Beam Scanning for Laser Radar and Other Uses [P]: U.S.Patent Application 13/840,686. 2013.

    [6] Fang Zujie, Ye Qing, Liu Feng, et al.. Progress of millimeter wave subcarrier optical fiber communication technologies [J]. Chinese J Lasers, 2006, 33(4): 481-488.

    [7] McKay Aaron, Judith M Dawes. Microwave generation using a dual-helicoidally-polarized ceramic microchip laser [C]. Microwave Photonics, 2008. 263-266.

    [8] Cheng Ren, Zhang Shulian. Diode-pumped dual-frequency microchip NdYAG laser with tunable frequency difference [J]. J Physics D: Applied Physics, 2009, 42(15): 155107.

    [9] Ding Jinyun, Zhang Liangqing, Zhang Zhifeng, et al.. Frequency splitting phenomenon of dual transverse modes in a NdYAG laser [J]. Optics & Laser Technology, 2010, 42(2): 341-346.

    [10] Yang Qing, Huo Yujing, Duan Yusheng, et al.. Double-longitudinal-mode continuous-wave laser with ultra-large frequency difference used for narrowband terahertz-wave generation [J]. Acta Optica Sinica, 2013, 33(5): 0514002.

    [11] Qiao Yunfei, Zheng Shile, Chi Hao, et al.. Electro-optically tunable microwave source based on composite-cavity microchip laser [J]. Opt Express, 2012, 20(27): 29090-29095.

    [12] M Hu, R D An, H Zhang, et al.. Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval [J]. Laser Phys Lett, 2013, 10(1): 015801.

    [13] P S Teh, R J Lewis, S Alam, et al.. 200 W diffraction limited, single-polarization, all-fiber picosecond MOPA [J]. Opt Express, 2013, 21(22): 25883-25889.

    [14] X Wang, H J Eichler, Z Lin, et al.. Stable and tunable single frequency Nd:GSAG laser around 943 nm [J]. Appl Opt, 2013, 52(30): 7302-7310.

    [15] X Wang, T Riesbeck, H J Eichler. Tunable single frequency microchip Nd:YAP MOPA laser operating at 1.08 μm [J]. Laser Phys, 2013, 23(4): 045804.

    [16] X Yan, Q Liu, X Jiang, et al.. The combined guiding effect in MOPA lasers [J]. Laser Phys Lett, 2013, 10(4): 045003.

    [17] Xiang Zhen, Dan Wang, Sunqiang Pan, et al.. Beam quality improvement by gain guiding effection end-pumped Nd:YVO4 laser amplifiers [J]. Opt Express, 2011, 19(21): 21060-21073.

    [18] Zhao Zhigang, Dong Yantao, Pan sunqiang, et al.. 50 W class double-end-pumped Nd:YVO4 TEM00 mode solid state laser oscillator [J].Chinese J Lasers, 2011, 38(9): 0902001.

    [19] Hu Miao, Tang Yongpan, An Rude, et al.. Study on the single-logitudinal-mode dual-frequency microchip laser for the generation of millimeter-wave signal [J]. J Optoelectrnics·Laser, 2011, 22(10): 1435 -1438.

    [20] Hu Miao, Zhang Hui, An Rude, et al.. Study on the dual-longitudinal mode dual-frequency microchip laser of variable frequency difference [J]. J Optoelectrnics·Laser, 2012, 23(12): 2292-2297.

    [21] Hu Miao, Zhang Hui, Zhang Fei, et al.. Study on the thermally induced frequency difference characteristics of dual-frequency microchip laser used optical generation millimeter-wave [J]. Acta Physica Sinica, 2013, 62(20): 204205.

    [22] Zhao Zhigang, Dong Yantao, Pan Sunqiang, et al.. Investigation on LD double-end-pumped high power Q-switched YVO4-Nd:YVO4-YVO4 fundamental mode solid state laser [J]. Chinese J Lasers, 2010, 37(9): 2409-2414.

    CLP Journals

    [1] Hu Miao, Sun Xiao, Li Qiliang, Zhou Xuefang, Ying Na, Wei Yizhen, Lu Yang, Yang Guowei, Zheng Yaoyuan, Wei Mian. Investigation of Mode Competition in Dual-Frequency Nd∶YVO4 Microchip Laser[J]. Chinese Journal of Lasers, 2015, 42(7): 702009

    [2] Dai Rong, Hu Miao, Cai Meiling, Li Qiliang, Zhou Xuefang, Wei Yizhen, Lu Yang. Experimental Study of Thermally Induced Frequency Difference Tuning of Nd:YVO4 Microchip Dual Frequency Lasers[J]. Chinese Journal of Lasers, 2017, 44(1): 101003

    Hu Miao, Zhang Fei, Zhang Xiang, Zheng Yaoyuan, Sun Xiao, Xu Yaxi, Xu Weizhong, Ge Jianhong, Xiang Zhen. Amplification of Dual-Frequency Laser for Photonic Millimeter-Wave Signal Generation[J]. Acta Optica Sinica, 2014, 34(11): 1114003
    Download Citation