• Photonics Research
  • Vol. 5, Issue 5, 527 (2017)
Hailong Wang, Yuyang Wang, Yi Wang, Weiqing Xu, and Shuping Xu*
Author Affiliations
  • State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China
  • show less
    DOI: 10.1364/PRJ.5.000527 Cite this Article Set citation alerts
    Hailong Wang, Yuyang Wang, Yi Wang, Weiqing Xu, Shuping Xu. Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy[J]. Photonics Research, 2017, 5(5): 527 Copy Citation Text show less
    References

    [1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442-453(2008).

    [2] P. K. Jan, X. H. Huang, I. H. El-Sayed, M. A. El-Sayed. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 41, 1578-1586(2008).

    [3] P. Lee, D. Meisal. Adsorption and surface enhanced Raman of dyes on silver and gold sols. J. Phys. Chem., 86, 3391-3395(1982).

    [4] O. Siiman, L. Bumm, R. Callaghan, C. Blatchford, M. Kerker. Surface-enhanced Raman scattering by citrate on colloidal silver. J. Phys. Chem., 87, 1014-1023(1983).

    [5] M. A. El-Sayed. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 34, 257-264(2001).

    [6] C. Orendorff, A. Gole, T. Sau, C. Murphy. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal. Chem., 77, 3261-3266(2005).

    [7] K. Kelly, E. Coronado, L. Zhao, G. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668-677(2003).

    [8] Y. Fang, N. Seong, D. D. Dlott. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science, 321, 388-392(2008).

    [9] W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, J. Zhang. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA, 109, 9281-9286(2012).

    [10] B. Pettinger. Light scattering by adsorbates at Ag particles: quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs. J. Chem. Phys., 85, 7442-7451(1986).

    [11] T. Coenen, E. R. Vesseur, A. Polman, A. F. Koenderink. Directional emission from plasmonic Yagi–Uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett., 11, 3779-3784(2011).

    [12] N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, N. J. Halas. Angle- and spectral-dependent light scattering from plasmonic nanocups. ACS Nano, 5, 7254-7262(2011).

    [13] Y. J. Gu, S. P. Xu, H. B. Li, S. Y. Wang, M. Cong, J. R. Lombardi, W. Q. Xu. Waveguide-enhanced surface plasmons for ultrasensitive SERS detection. J. Phys. Chem. Lett., 4, 3153-3157(2013).

    [14] D. Hu, C. Chen, Z. Qi. Resonant mirror enhanced Raman spectroscopy. J. Phys. Chem. C, 118, 13099-13106(2014).

    [15] K. McKee, M. Meyer, E. A. Smith. Plasmon waveguide resonance Raman spectroscopy. Anal. Chem., 84, 4300-4306(2012).

    [16] M. W. Meyer, K. J. McKee, E. A. Smith. Scanning angle plasmon waveguide resonance Raman spectroscopy for the analysis of thin polystyrene films. J. Phys. Chem. C, 116, 24987-24992(2012).

    [17] B. Dong, W. Zhang, Z. P. Li, M. T. Sun. Remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering using evanescent wave propagating in quasi-one-dimensional MoO3 ribbon dielectric waveguide. Plasmonics, 6, 189-193(2011).

    [18] S. Wang, Z. Y. Wu, L. Chen, Y. J. Gu, S. P. Xu, W. Q. Xu. Leaky mode resonance of polyimide waveguide couples metal plasmon resonance for surface-enhanced Raman scattering. J. Phys. Chem. C, 119, 24942-24949(2015).

    [19] C. Chen, J. Li, L. Wang, D. Lu, Z. Qi. Waveguide-coupled directional Raman radiation for surface analysis. Phys. Chem. Chem. Phys., 17, 21278-21287(2015).

    [20] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 464, 392-395(2010).

    [21] H. Masuda, M. M. Satoh. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys., 35, L126-L129(1996).

    [22] H. Masuda, K. Fukuda. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268, 1466-1468(1995).

    [23] L. Zaraska, W. J. Stepniowski, E. Ciepiela, G. D. Sulka. The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid. Thin Solid Films, 534, 155-161(2013).

    [24] O. Nishinaga, T. Kikuchi, S. Natsui, R. O. Suzuki. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing. Sci. Rep., 3, 2748(2013).

    [25] T. T. Xu, R. D. Piner, R. S. Ruoff. An improved method to strip aluminum from porous anodic alumina films. Langmuir, 19, 1443-1445(2003).

    [26] H. B. Li, S. P. Xu, Y. Liu, Y. J. Gu, W. Q. Xu. Directional emission of surface-enhanced Raman scattering based on a planar film plasmonic antenna. Thin Solid Films, 520, 6001-6006(2012).

    [27] Y. Liu, S. P. Xu, B. Tang, Y. Wang, J. Zhou, X. L. Zheng, B. Zhao, W. Q. Xu. Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering. Rev. Sci. Instrum., 81, 036105(2010).

    [28] Y. J. Chen, W. P. Chen, E. Burstein. Surface-electromagnetic-wave-enhanced Raman scattering by overlayers on metals. Phys. Rev. Lett., 36, 1207-1210(1976).

    [29] M. Futamata, P. Borthen, J. Thomassen, D. Schumacher, A. Otto. Applications of an ATR method in Raman spectroscopy. Appl. Spectrosc., 48, 252-260(1994).

    [30] S. A. Meyer, E. C. Le Ru, P. G. Etchegoin. Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal. Chem., 83, 2337-2344(2011).

    [31] J. N. Yih, S. J. Chen, K. T. Huang, Y. T. Su, G. Y. Lin. A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device. Proc. SPIE, 5327, 5-9(2004).

    CLP Journals

    [1] Min Liu, Wending Zhang, Fanfan Lu, Tianyang Xue, Xin Li, Lu Zhang, Dong Mao, Ligang Huang, Feng Gao, Ting Mei, Jianlin Zhao. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy[J]. Photonics Research, 2019, 7(5): 526

    [2] Yu Tian, Hailong Wang, Yijia Geng, Lili Cong, Yu Liu, Weiqing Xu, Shuping Xu. Boosting a sub-10 nm nanogap array by plasmon-triggered waveguide resonance[J]. Photonics Research, 2020, 8(12): 1850

    Hailong Wang, Yuyang Wang, Yi Wang, Weiqing Xu, Shuping Xu. Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy[J]. Photonics Research, 2017, 5(5): 527
    Download Citation