• Frontiers of Optoelectronics
  • Vol. 5, Issue 1, 68 (2012)
Ruixi ZENG1、2, Yuan ZHANG1、*, and Sailing HE1、2
Author Affiliations
  • 1Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
  • 2Joint Research Center of Photonics of Zhejiang University and South China Normal University, South China Normal University, Guangzhou 510006, China
  • show less
    DOI: 10.1007/s12200-012-0195-8 Cite this Article
    Ruixi ZENG, Yuan ZHANG, Sailing HE. Energy intensity analysis of modes in hybrid plasmonic waveguide[J]. Frontiers of Optoelectronics, 2012, 5(1): 68 Copy Citation Text show less
    References

    [1] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189-193

    [2] Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7-8): 20-27

    [3] Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158-1160

    [4] Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters, 2005, 86(21): 211101

    [5] Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters, 2005, 30(10): 1186-1188

    [6] Liu L, Han Z H, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645-6650

    [7] Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102

    [8] Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069-1071

    [9] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508-511

    [10] Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation. Nature Photonics, 2008, 2(8): 496-500

    [11] Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362-364

    [12] Dai D X, Yang L, He S L. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. Journal of Lightwave Technology, 2008, 26(6): 704-709

    [13] Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971-12979

    [14] Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646-16653

    [15] Dai D X, Shi Y C, He S L,Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or highindex gain medium. Optics Express, 2011, 19(14): 12925-12936

    [16] Ordal M A, Bell R J, Alexander R W Jr, Long L L, Querry M R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics, 1985, 24(24): 4493-4499

    Ruixi ZENG, Yuan ZHANG, Sailing HE. Energy intensity analysis of modes in hybrid plasmonic waveguide[J]. Frontiers of Optoelectronics, 2012, 5(1): 68
    Download Citation