• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 4, 2240006 (2022)
[in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1、2、*, [in Chinese]1, and [in Chinese]1
Author Affiliations
  • 1Key Laboratory of Hunan Province for Water, Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University Changsha 410083, P. R. China
  • 2State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
  • show less
    DOI: 10.1142/s1793545822400065 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. A "donor–acceptor" structured semiconductor polymer for near infrared fluorescence imaging guided photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2240006 Copy Citation Text show less
    References

    [1] L. Lin, X. J. Song, X. C. Dong, B. H. Li, "Nanophotosensitizers for enhanced photodynamic therapy," Photodiag. Photodyn. Ther. 36, 102597 (2021).

    [2] Y. Zhang, D. X. Li, J. S. Tan, Z. S. Chang, X. Y. Liu, W. S. Ma, Y. H. Xu, "Near-Infrared Regulated Nanozymatic/Photothermal/Photodynamic Triple-Therapy for Combating Multidrug-Resistant Bacterial Infections via Oxygen-Vacancy Molybdenum Trioxide Nanodots," Small 17, 2005739 (2021).

    [3] C. Liang, L. G. Xu, G. S. Song, Z. Liu, "Emerging nanomedicine approaches fighting tumor metastasis: Animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy," Chem. Soc. Rev. 45, 6250–6269 (2016).

    [4] J. H. Zou, Z. H. Yin, P. Wang, D. P. Chen, J. J. Shao, Q. Zhang, L. G. Sun, W. Huang, X. C. Dong, "Photosensitizer synergistic effects: D-A-D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy," Chem. Sci. 9, 2188–2194 (2018).

    [5] H. Y. Wang, X. T. Pan, X. T. Wang, W. W. Wang, Z. J. Huang, K. Gu, S. Liu, F. R. Zhang, H. Y. Shen, Q. P. Yuan, J. Ma, W. Yuan, H. Y. Liu, "Degradable carbon-silica nanocomposite with immunoadjuvant property for dual-modality photothermal/photodynamic therapy," ACS Nano 14, 2847–2859 (2020).

    [6] S. J. Zhao, S. L. Wu, Q. Y. Jia, L. Huang, M. H. Lan, P. F. Wang, W. J. Zhang, "Lysosome-targetable carbon dots for highly e±cient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging," Chem. Eng. J. 388, 124212 (2020).

    [7] M. H. Lan, S. J. Zhao, W. M. Liu, C. S. Lee, W. J. Zhang, P. F. Wang, "Photosensitizers for photodynamic therapy," Adv. Healthc. Mater. 8, 1900132 (2019).

    [8] D. Yang, G. X. Yang, Q. Q. Sun, S. L. Gai, F. He, Y. L. Dai, C. N. Zhong, P. P. Yang, "Carbon-dotdecorated TiO2 nanotubes toward photodynamic therapy based on water-splitting mechanism," Adv. Healthc. Mater. 7, 1800042 (2018).

    [9] F. Fang, Y. Yuan, Y. P. Wan, J. Li, Y. Y. Song, W. C. Chen, D. X. Zhao, Y. Chi, M. L. Li, C. S. Lee, J. F. Zhang, "Near-infrared thermally activated delayed fluorescence nanoparticle: A metal-free photosensitizer for two-photon-activated photodynamic therapy at the cell and small animal level," Small 18, 2106215 (2022).

    [10] S. J. Zhao, L. Yan, M. Y. Cao, L. Huang, K. Yang, S. L. Wu, M. H. Lan, G. L. Niu, W. J. Zhang, "Nearinfrared light-triggered lysosome-targetable carbon dots for photothermal therapy of cancer," ACS Appl. Mater. Interfaces 13, 53610–53617 (2021).

    [11] B. L. Ling, S. J. Zhao, L. Huang, Q. Wang, J. F. Xiao, M. H. Lan, "Recent advances and prospects of carbon dots in phototherapy," Chem. Eng. J. 408, 127245 (2021).

    [12] L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, Z. Liu, "PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy," Adv. Mater. 26, 1886–1893 (2014).

    [13] W. Tao, X. Y. Ji, X. D. Xu, M. A. Islam, Z. J. Li, S. Chen, P. E. Saw, H. Zhang, Z. Bharwani, Z. L. Guo, J. J. Shi, O. C. Farokhzad, "Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy," Angew. Chem. Int. Ed. 56, 11896–11900 (2017).

    [14] M. D. Liu, Y. Yu, D. K. Guo, S. B. Wang, C. X. Li, F. Gao, C. Zhang, B. R. Xie, Z. L. Zhong, X. Z. Zhang, "Integration of porous coordination network and black phosphorus nanosheets for improved photodynamic therapy of tumor," Nanoscale 12, 8890–8897 (2020).

    [15] Z. X. Shi, X. Han, W. B. Hu, H. Bai, B. Peng, L. Ji, Q. L. Fan, L. Li, W. Huang, "Bioapplications of small molecule Aza-BODIPY: From rational structural design to in vivo investigations," Chem. Soc. Rev. 49, 7533–7567 (2020).

    [16] Q. L. Zou, M. Abbas, L. Y. Zhao, S. K. Li, G. Z. Shen, X. H. Yan, "Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy," J. Am. Chem. Soc. 139, 1921–1927 (2017).

    [17] Y. Cai, P. P. Liang, Q. Y. Tang, X. Y. Yang, W. L. Si, W. Huang, Q. Zhang, X. C. Dong, "Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy," ACS Nano 11, 1054–1063 (2017).

    [18] L. Huang, S. J. Zhao, J. S. Wu, L. Yu, N. Singh, K. Yang, M. H. Lan, P. F. Wang, J. S. Kim, "Photodynamic therapy for hypoxic tumors: Advances and perspectives," Coord. Chem. Rev. 438, 213888 (2021).

    [19] X. Z. Zhao, J. P. Liu, J. L. Fan, H. Chao, X. J. Peng, "Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: From molecular design to application," Chem. Soc. Rev. 50, 4185–4219 (2021).

    [20] G. L. He, N. Xu, H. Y. Ge, Y. Lu, R. Wang, H. X. Wang, J. J. Du, J. J. Fan, W. Sun, X. J. Peng, "Redlight-responsive ru complex photosensitizer for lysosome localization photodynamic therapy," ACS Appl. Mater. Interfaces 13, 19572–19580 (2021).

    [21] M. H. Al-Afyouni, T. N. Rohrabaugh, K. F. Al-Afyouni, C. Turro, "New Ru(II) photocages operative with near-IR light: New platform for drug delivery in the PDT window," Chem. Sci. 9, 6711–6720 (2018).

    [22] L. M. Loftus, K. F. Al-Afyouni, T. N. Rohrabaugh, J. C. Gallucci, C. E. Moore, J. J. Rack, C. Turro, "Unexpected role of Ru(II) orbital and spin contribution on photoinduced ligand exchange: New mechanism to access the photodynamic therapy window," J. Phys. Chem. C 123, 10291–10299 (2019).

    [23] F. Fang, L. Zhu, M. Li, Y. Y. Song, M. Sun, D. X. Zhao, J. F. Zhang, "Thermally activated delayed fluorescence material: An emerging class of metal-free luminophores for biomedical applications," Adv. Sci. 8, 2102970 (2021).

    [24] X. L. Liao, Y. S. Zheng, Z. G. Lin, Y. Shen, H. Y. Lin, X. L. Liu, D. Zhang, B. H. Li, "Self-assembled metallo-supramolecular nanoflowers for NIR/acidictriggered multidrug release, long-term tumor retention and NIR-II fluorescence imaging-guided photochemotherapy," Chem. Eng. J. 400, 125882 (2020).

    [25] Z. W. Wei, M. Wu, S. Y. Lan, J. Li, X. L. Zhang, D. Zhang, X. L. Liu, J. F. Liu, "Semiconducting polymer-based nanoparticles for photothermal therapy at the second near-infrared window," Chem. Commun. 54, 13599–13602 (2018).

    [26] Y. Xu, X. Zhai, P. Su, T. Q. Liu, L. Y. Zhou, J. J. Zhang, B. Q. Bao, L. H. Wang, "Highly stable semiconducting polymer nanoparticles for multiresponsive chemo/photothermal combined cancer therapy," Theranostics 10, 5966–5978 (2020).

    [27] J. C. Li, J. H. Rao, K. Y. Pu, "Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy," Biomaterials 155, 217–235 (2018).

    [28] J. C. Li, K. Y. Pu, "Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation," Chem. Soc. Rev. 48, 38–71 (2019).

    [29] G. X. Feng, G. Q. Zhang, D. Ding, "Design of superior phototheranostic agents guided by Jablonski diagrams," Chem. Soc. Rev. 49, 8179–8234 (2020).

    [30] L. Huang, D. Y. Qing, S. J. Zhao, X. L. Wu, K. Yang, X. J. Ren, X. L. Zheng, M. H. Lan, J. Ye, L. T. Zeng, G. L. Niu, "Acceptor–donor–acceptor structured deepred AIE photosensitizer: Lysosome-specific targeting, in vivo long-term imaging, and effective photodynamic therapy," Chem. Eng. J. 430, 132638 (2022).

    [31] F. Hu, S. Xu, B. Liu, "Photosensitizers with aggregation-induced emission: Materials and biomedical applications," Adv. Mater. 30, 1801350 (2021).

    [32] Y. P. Wan, G. H. Lu,W. C. Wei, Y. H. Huang, S. L. Li, J. X. Chen, X. Cui, Y. F. Xiao, X. Z. Li, Y. H. Liu, X. M. Meng, P. F. Wang, H. Y. Xie, J. F. Zhang, K. T. Wong, C. S. Lee, "Stable organic photosensitizer nanoparticles with absorption peak beyond 800 nanometers and high reactive oxygen species yield for multimodality phototheranostics," ACS Nano 14, 9917–9928 (2020).

    [33] Y. Zhang, M. K. Shi, Z. R. Yan, S. Zhang, M. Y. Wang, H. Yu, H. Y. Li, Y. C. Ying, S. H. Qiu, J. L. Liu, H. Yang, H. B. Chen, H. He, Z. Q. Guo, "Ultrastable near-infrared nonlinear organic chromophore nanoparticles with intramolecular charge transfer for dually photoinduced tumor ablation," Adv. Healthcare Mater. 9, 2001042 (2020).

    [34] S. L. Li, Q. Y. Deng, Y. C. Zhang, X. Z. Li, G. H. Wen, X. Cui, Y. P. Wan, Y. M. Huang, J. X. Chen, Z. H. Liu, L. D. Wang, C. S. Lee, "Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II Biowindow," Adv. Mater. 32, 2001146 (2020).

    [35] N. Sun, X. Wen, S. Zhang, "Strategies to improve photodynamic therapy e±cacy of metal-free semiconducting conjugated polymers," Int. J. Nanomed. 17, 247–271 (2022).

    [36] T. Yang, L. Liu, Y. B. Deng, Z. Q. Guo, G. B. Zhang, Z. S. Ge, H. T. Ke, H. B. Chen, "Ultrastable near-infrared conjugated-polymer nanoparticles for dually photoactive tumor inhibition," Adv. Mater. 29, 1700487 (2017).

    [37] S. T. Xu, L. L. Feng, J. Yuan, Z. G. Zhang, Y. F. Li, H. J. Peng, Y. P. Zou, "Hexafluoroquinoxaline based polymer for nonfullerene solar cells reaching 9.4% e±ciency," ACS Appl. Mater. Interfaces 9, 18816–18825 (2017).

    [38] S. T. Xu, X. J. Wang, L. L. Feng, Z. C. He, H. J. Peng, V. Cimrova, J. Yuan, Z. G. Zhang, Y. F. Li, Y. P. Zou, "Optimizing the conjugated side chains of quinoxaline based polymers for nonfullerene solar cells with 10.5% e±ciency," J. Mater. Chem. A 6, 3074–3083 (2018).

    [39] Y. Lyu, Y. Fang, Q. Q. Miao, X. Zhen, D. Ding, K. Y. Pu, "Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy," ACS Nano 10, 4472–4481 (2016).

    [40] X. Y. Deng, Z. W. Shao, Y. L. Zhao, "Solutions to the drawbacks of photothermal and photodynamic cancer therapy," Adv. Sci. 8, 2002504 (2021).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. A "donor–acceptor" structured semiconductor polymer for near infrared fluorescence imaging guided photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(4): 2240006
    Download Citation