• Photonics Research
  • Vol. 4, Issue 4, 0153 (2016)
Yanyang Zhou1, Linjie Zhou1、*, Haike Zhu1, Chiyan Wong2, Yida Wen2, Lei Liu2, Xinwan Li1, and Jianping Chen1
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Transmission Technology Research Department, Huawei Technology Co. Ltd., Shenzhen 518129, China
  • show less
    DOI: 10.1364/prj.4.000153 Cite this Article Set citation alerts
    Yanyang Zhou, Linjie Zhou, Haike Zhu, Chiyan Wong, Yida Wen, Lei Liu, Xinwan Li, Jianping Chen. Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator[J]. Photonics Research, 2016, 4(4): 0153 Copy Citation Text show less
    References

    [1] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [2] T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong. Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization. IEEE J. Sel. Top. Quantum Electron., 16, 307-315(2010).

    [3] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, S. S. Hsu. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229-245(2014).

    [4] H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, J. Z. Yu. Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators. IEEE J. Sel. Top. Quantum Electron., 20, 23-32(2014).

    [5] D. J. Thomson, F. Y. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. F. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, G. Z. Mashanovich. High performance Mach–Zehnder-based silicon optical modulators. IEEE J. Sel. Top. Quantum Electron., 19, 85-94(2013).

    [6] S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. von den Driesch, J. Müller, S. Mantl, D. Buca, J. Witzens. Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express, 23, 23526-23550(2015).

    [7] X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, G.-Q. Lo. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express, 21, 12776-12782(2013).

    [8] K. Goi, A. Oka, H. Kusaka, Y. Terada, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong. Low-loss high-speed silicon IQ modulator for QPSK/DQPSK in C and L bands. Opt. Express, 22, 10703-10709(2014).

    [9] R. Ding, Y. Liu, Y. J. Ma, Y. S. Yang, Q. Li, A. E. J. Lim, G. Q. Lo, K. Bergman, T. Baehr-Jones, M. Hochberg. High-speed silicon modulator with slow-wave electrodes and fully independent differential drive. J. Lightwave Technol., 32, 2240-2247(2014).

    [10] J. F. Ding, R. Q. Ji, L. Zhang, L. Yang. Electro-optical response analysis of a 40  Gb/s silicon Mach-Zehnder optical modulator. J. Lightwave Technol., 31, 2434-2440(2013).

    [11] M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo. Low power 50  Gb/s silicon traveling wave Mach–Zehnder modulator near 1300  nm. Opt. Express, 21, 30350-30357(2013).

    [12] D. Thomson, F. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J. Fedeli, G. Reed. High contrast 40  Gbit/s optical modulation in silicon. Opt. Express, 19, 11507-11516(2011).

    [13] J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. M. Wu, X. Wang, S. C. Zou, F. W. Gan. Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator. J. Lightwave Technol., 31, 4119-4125(2013).

    [14] H. Yu, W. Bogaerts. An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators. J. Lightwave Technol., 30, 1602-1609(2012).

    [15] H. Jayatilleka, W. D. Sacher, J. K. S. Poon. Analytical model and fringing-field parasitics of carrier-depletion silicon-on-insulator optical modulation diodes. IEEE Photon. J., 5, 2200211(2013).

    [16] P. Dong, L. Chen, Y.-k. Chen. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express, 20, 6163-6169(2012).

    [17] J. T. Wang, L. J. Zhou, H. K. Zhu, R. Yang, Y. Y. Zhou, L. Liu, T. Wang, J. P. Chen. Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode. Photon. Res., 3, 58-62(2015).

    [18] H. K. Zhu, L. J. Zhou, T. Wang, L. Liu, C. Y. Wong, Y. Y. Zhou, R. Yang, X. W. Li, J. P. Chen. Optimized silicon QPSK modulator with 64-Gb/s modulation speed. IEEE Photon. J., 7, 1-6(2015).

    [19] M. Chagnon, M. Morsy-Osman, M. Poulin, C. Paquet, S. Lessard, D. V. Plant. Experimental parametric study of a silicon photonic modulator enabled 112-Gb/s PAM transmission system with a DAC and ADC. J. Lightwave Technol., 33, 1380-1387(2015).

    [20] L. Chen, P. Dong, Y. K. Chen. Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28  Gb/s. IEEE Photon. Technol. Lett., 24, 936-938(2012).

    [21] Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, J. Chen. Linearity measurement of a silicon single-drive push-pull Mach-Zehnder modulator. Conference on Lasers and Electro-Optics (CLEO): Science and Innovations, SW3N-6(2015).

    [22] E. L. Chen, S. Y. Chou. Characteristics of coplanar transmission lines on multilayer substrates: modeling and experiments. IEEE Trans. Microwave Theory Tech., 45, 939-945(1997).

    [23] V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, M. E. Zaghloul. Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates. IEEE Trans. Microwave Theory Tech., 46, 632-640(1998).

    [24] Y. R. Kwon, V. M. Hietala, K. S. Champlin. Quasi-TEM analysis of ‘slow-wave’ mode propagation on coplanar microstructure MIS transmission lines. IEEE Trans. Microwave Theory Tech., 35, 545-551(1987).

    [25] T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim. Ultralow drive voltage silicon traveling-wave modulator. Opt. Express, 20, 12014-12020(2012).

    [26] W. Heinrich. Quasi-TEM description of MMIC coplanar lines including conductor-loss effects. IEEE Trans. Microwave Theory Tech., 41, 45-52(1993).

    [27] D. Petousi, L. Zimmermann, A. Gajda, M. Kroh, K. Voigt, G. Winzer, B. Tillack, K. Petermann. Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach–Zehnder modulators for high-speed operation. IEEE J. Sel. Top. Quantum Electron., 21, 199-206(2015).

    [28] K. Goi, N. Ishikura, H. Ishihara, S. Sakamoto, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D. L. Kwong. Low-voltage silicon Mach-Zehnder modulator operating at high temperatures without thermo-electric cooling. Optical Fiber Communication Conference, W2A–23(2016).

    [29] X. Xiao, M. Li, Z. Li, L. Wang, Q. Yang, S. Yu. Substrate removed silicon Mach-Zehnder modulator for high baud rate optical intensity modulations. Optical Fiber Communication Conference, Th4H-5(2016).

    Yanyang Zhou, Linjie Zhou, Haike Zhu, Chiyan Wong, Yida Wen, Lei Liu, Xinwan Li, Jianping Chen. Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator[J]. Photonics Research, 2016, 4(4): 0153
    Download Citation