• Journal of Inorganic Materials
  • Vol. 38, Issue 1, 43 (2023)
Xuetong WU1、2, Ruofei ZHANG2, Xiyun YAN2, and Kelong FAN2、*
Author Affiliations
  • 11. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
  • 22. Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • show less
    DOI: 10.15541/jim20220578 Cite this Article
    Xuetong WU, Ruofei ZHANG, Xiyun YAN, Kelong FAN. Nanozyme: a New Approach for Anti-microbial Infections[J]. Journal of Inorganic Materials, 2023, 38(1): 43 Copy Citation Text show less
    Mechanism of anti-microbial infections of nanozymes[25⇓⇓-28]
    1. Mechanism of anti-microbial infections of nanozymes[25-28]
    Antibacterial killing effect of a nanozyme, Q-MOFCe0.5[32](a, b) Plate count results of the antibacterial effects of Q-MOFCe0.5 on E. coli (a) and S. aureus (b); (c, d) Statistical results of the corresponding bacterial viability rates of E. coli (c) and S. aureus (d); (e) The live (SYTO-9, green)/dead (PI, red) staining results of E. coli and S. aureus; (f) Scanning electron microscope (SEM) results of bacterial samples treated by nanozymesColorful figures are available on website
    2. Antibacterial killing effect of a nanozyme, Q-MOFCe0.5[32](a, b) Plate count results of the antibacterial effects of Q-MOFCe0.5 on E. coli (a) and S. aureus (b); (c, d) Statistical results of the corresponding bacterial viability rates of E. coli (c) and S. aureus (d); (e) The live (SYTO-9, green)/dead (PI, red) staining results of E. coli and S. aureus; (f) Scanning electron microscope (SEM) results of bacterial samples treated by nanozymesColorful figures are available on website
    Characterization and ROS generation ability of a nanozyme, Ag-TiO2 SAN[34](a, b) Transmission electron microscope (TEM) images of Ag-TiO2 SAN co-localized with lysosomes of mouse (RAM 264.7) and human (THP-1) macrophages; (c, d) Ag-TiO2 SAN enhanced ROS generation. THP-1: a kind of human monocytic leukemia cellColorful figures are available on website
    3. Characterization and ROS generation ability of a nanozyme, Ag-TiO2 SAN[34](a, b) Transmission electron microscope (TEM) images of Ag-TiO2 SAN co-localized with lysosomes of mouse (RAM 264.7) and human (THP-1) macrophages; (c, d) Ag-TiO2 SAN enhanced ROS generation. THP-1: a kind of human monocytic leukemia cellColorful figures are available on website
    Characterization, Ag+ release, and ROS generation ability of Ag/BMO NPs through photodynamic combination therapy[47](a) SEM image of Ag/BMO NPs; (b) Percentage release of Ag+ at pH 7.35 and pH 6.75 showing photo-enhanced ROS generation ability of Ag/BMO; (c) 1O2 detection result by probe of single oxygen sensor green; (d) ESR spectra of 1O2; (e) ·OH detection result by MB indicator; (f) ESR spectra of ·OH. L: 1064 nm laser (1 W·cm-2, 10 min) Colorful figures are available on website
    4. Characterization, Ag+ release, and ROS generation ability of Ag/BMO NPs through photodynamic combination therapy[47](a) SEM image of Ag/BMO NPs; (b) Percentage release of Ag+ at pH 7.35 and pH 6.75 showing photo-enhanced ROS generation ability of Ag/BMO; (c) 1O2 detection result by probe of single oxygen sensor green; (d) ESR spectra of 1O2; (e) ·OH detection result by MB indicator; (f) ESR spectra of ·OH. L: 1064 nm laser (1 W·cm-2, 10 min) Colorful figures are available on website
    In vitro antimicrobial performance of Fe3O4-GOx based on cascaded reaction[50](a) 2',7'-Dichlorofluorescein staining images of E. coli and MRSA; (b) Growth curves of MRSA; (c) Representative SEM and live/dead staining images of MRSA; (d) Crystal violet staining image and its absorbance for integrated MRSA biofilmColorful figures are available on website
    5. In vitro antimicrobial performance of Fe3O4-GOx based on cascaded reaction[50](a) 2',7'-Dichlorofluorescein staining images of E. coli and MRSA; (b) Growth curves of MRSA; (c) Representative SEM and live/dead staining images of MRSA; (d) Crystal violet staining image and its absorbance for integrated MRSA biofilmColorful figures are available on website
    S-Ab can be used as bio-orthogonal catalyst to complete shape-based selective recognition of bacteria and catalyze precursors into active antibacterial molecule[56]Colorful figure is available on website
    6. S-Ab can be used as bio-orthogonal catalyst to complete shape-based selective recognition of bacteria and catalyze precursors into active antibacterial molecule[56]Colorful figure is available on website
    MechanismNanozymeCatalytic activityMechanismPathogensRef.
    Generation ROSCu-MOFOXDROSE. coli; S. aureus[25]
    Cu-CDPODROSE. coli; S. aureus[27]
    Chitosan grafted Fe-doped-carbon dots (CS@Fe/CDs)PODROSP. aeruginosa; S. aureus.[33]
    Ag-TiO2 SANPODROSSARS-CoV-2[34]
    Fmoc-diphenylalanine hydrogel-eEncapsulated PtOXD; PODROSE. coli; S. aureus[57]
    CFO@BFO nanozyme-eelCATROSE. coli; MRSA[58]
    Cu2O@CuO; Cu@Cu2S nanodotOXD; PODROSE. coli; S. aureus[59]
    FeCo@PDA NPsPODROSE. coli; S. aureus[60]
    Fe3O4@SiO2@dendritic mesoporous silica@small-Fe3O4 nanoparticlesPODROSE. coli[61]
    Mesoporous vanadium oxide nanospheresPODROSE. coli; S. aureus[62]
    Au3+-UiO-67 NMOFsOXD; PODROSE. coli; S. aureus[63]
    CS@Fe3O4POD; SOD; CATROSA. baumannii[64]
    N/Cl-CDs + Ag NPsOXDROSE. coli; S. aureus; MRSA[65]
    Cu-N-COXD; PODROSE. coli; S. aureus; B. cereus; C. albicans; MRSA[66]
    PEGMA-co-GMA-co-AAm-HBPL-MnO2 hydrogelCAT; PODROSP. aeruginosa; S. aureus; E. coli[67]
    GOx-MOF hydrogelGOx; PODROSE. coli; S. aureus[68]
    Taurine-Cu-3(PO4)(2) hybrid nanoflowerPODROSE. coli; S. aureus;B. cereus; C.albicans[69]
    FePO4-HGPOD; SOD; CATROSE. coli; S. aureus[70]
    Combination therapyAu/MoO3-xPODPhotothermal; ROS(O2•-MRSA[26]
    Cu-MOFN nanosheetPODHot electron transferred ROSS. aureus[38]
    CuSeNPs@MPBAPODPhotothermal; ROSE. coli; S. aureus[43]
    Hollow mesoporous Prussian blue nanoparticles (HMPBNPs)PODROS; PhotothermalE. coli; S. aureus[44]
    Bacitracin-functionalized dextran-MoSe2(AMP/dex-MoSe2 NSs)PODPhotothermal; ROSE. coli[45]
    MechanismNanozymeCatalytic activityMechanismPathogensRef.
    Combination therapyAg/Bi2MoO6PODPhotodynamic; ROSS. aureus[47]
    CuxO-PDAPODPhotothermal; ROSE. coli; S. aureus[48]
    Histidine-containing carbon nanodotsOXDPhotodynamic; ROSE. coli[49]
    VOx-artificial enzymeOXD, PODElectron enhanced ROSS. aureus[71]
    EM@MoS2PODPhotothermal; ROSS. aureus[72]
    LS-CuS@PVAPODPhotothermal; Photodynamic; ROSE. coli; S. aureus[73]
    D-A-conjugated COFPODPhotothermal; Photodynamic; ROSE. coli; S. aureus[74]
    Cu3SnS4 NSsPODPhotothermal; ROSE. coli; S. aureus[75]
    Mn3O4HNSs@ICGOXDPhotothermal; Photodynamic; ROSE. faecalis; E. coli; P. aeruginosa[76]
    Au NCs@PCN MOFPODPhotothermal; ROSE. coli; S. aureus[77]
    Ag (8.5%)@NiS2-xPODPhotothermal; ROSE. coli[78]
    Cascaded reactionFe3O4-GOxGOx; CAT; PODROSE. coli; S. aureus[50]
    Fe2(MoO4)3@GOxGOx; PODROSE. coli; S. aureus[51]
    ODex/gC/MoS2@Au@BSA HydrogelPODROSE. coli; S. aureus[79]
    CuO nanospheresPOD; CATROSE. coli; S. aureus[80]
    MnFe2O4@MIL/Au&GOx(MMAG)GOx; PODROSE. coli; S. aureus[81]
    Bio-orthogonal catalysisMan-NZs(Au, FeTPP)Bio-orthogonal catalysisSalmonella; Lactobacillus sp.[54]
    Man-NZBio-orthogonal catalysisE. coli; MSRA[55]
    E-Ab and S-AbBio-orthogonal catalysisE. coli; S. aureus[56]
    OthersCeO2@ZrO2HaloperoxidaseHBr-E. coli; S. aureus[82]
    Table 1.

    Nanozymes for anti-microbial infections

    Xuetong WU, Ruofei ZHANG, Xiyun YAN, Kelong FAN. Nanozyme: a New Approach for Anti-microbial Infections[J]. Journal of Inorganic Materials, 2023, 38(1): 43
    Download Citation