• Laser & Optoelectronics Progress
  • Vol. 60, Issue 23, 2300001 (2023)
Fei Liang1, Cheng He2, Yanfeng Chen2、*, Haohai Yu1、**, and Huaijin Zhang1、***
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China
  • 2National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, Jiangsu, China
  • show less
    DOI: 10.3788/LOP232105 Cite this Article Set citation alerts
    Fei Liang, Cheng He, Yanfeng Chen, Haohai Yu, Huaijin Zhang. China's Top 10 Optical Breakthroughs: Electron-Phonon Coupling Effect and Laser Wavelength Extension[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2300001 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Chen C T, Wu B C, Jiang A D et al. A new-type ultraviolet SHG crystal-β-BaB2O4[J]. Scientia Sinica B, 28, 235-243(1985).

    [3] Chen C T, Wu Y C, Jiang A D et al. New nonlinear-optical crystal∶LiB3O5[J]. Journal of the Optical Society of America B, 6, 616-621(1989).

    [4] Chen C T, Xu Z Y, Deng D Q et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 68, 2930-2932(1996).

    [5] Feng J, Zhu Y Y, Ming N B. Harmonic generations in an optical Fibonacci superlattice[J]. Physical Review B, 41, 5578-5582(1990).

    [6] Zhu S N, Zhu Y Y, Ming N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 278, 843-846(1997).

    [7] Einstein A. Zur quantentheorie der strahlung[J]. Physics Z, 18, 63-77(1917).

    [8] Gordon J P, Zeiger H J, Townes C H. Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3[J]. Physical Review, 95, 282-284(1954).

    [9] Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 112, 1940-1949(1958).

    [10] Javan A, Bennett W R, Herriott D R. Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture[J]. Physical Review Letters, 6, 106-110(1961).

    [11] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).

    [12] Holonyak N, Jr, Bevacqua S F. Coherent (visible) light emission from Ga(As1-xPx) junctions[J]. Applied Physics Letters, 1, 82-83(1962).

    [13] Quist T M, Rediker R H, Keyes R J et al. Semiconductor maser of GaAs[J]. Applied Physics Letters, 1, 91-92(1962).

    [14] Geusic J E, Marcos H M, Van Uitert L G. Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets[J]. Applied Physics Letters, 4, 182-184(1964).

    [15] Snitzer E. Optical maser action of Nd3+ in a Barium crown glass[J]. Physical Review Letters, 7, 444-446(1961).

    [16] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 3, 1182-1186(1964).

    [17] Sorokin P P, Lankard J R. Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine[J]. IBM Journal of Research and Development, 10, 162-163(1966).

    [18] Basov N G, Danilychev V A, Popov Y M et al. Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam[J]. JETP Letters, 12, 329(1970).

    [19] Deacon D A G, Elias L R, Madey J M J et al. First operation of a free-electron laser[J]. Physical Review Letters, 38, 892-894(1977).

    [20] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [21] Cennini G, Ritt G, Geckeler C et al. All-optical realization of an atom laser[J]. Physical Review Letters, 91, 240408(2003).

    [22] Vahala K, Herrmann M, Knünz S et al. A phonon laser[J]. Nature Physics, 5, 682-686(2009).

    [23] Wang N, Wen H, Alvarado Zacarias J C et al. Laser2: a two-domain photon-phonon laser[J]. Science Advances, 9, eadg7841(2023).

    [24] Huang K, Rhys A. Theory of light absorption and non-radiative transitions in F-centres[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 204, 406-423(1950).

    [25] Huang K. Lattice relaxation and multiphonon transitions[J]. Contemporary Physics, 22, 599-612(1981).

    [26] Huang K. Lattice relaxation and theory of multiphonon transitions[J]. Progress in Physics, 1, 31-85(1981).

    [27] Luo J J, Wang X M, Li S R et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 563, 541-545(2018).

    [28] Noffsinger J, Kioupakis E, Van de Walle C G et al. Phonon-assisted optical absorption in silicon from first principles[J]. Physical Review Letters, 108, 167402(2012).

    [29] Henderson B, King R D, Stoneham A M. The temperature dependence of the F band in magnesium oxide[J]. Journal of Physics C: Solid State Physics, 1, 586-593(1968).

    [30] Dawson R K, Pooley D. F band absorption in alkali halides as a function of temperature[J]. Physica Status Solidi (b), 35, 95-105(1969).

    [31] Albers P, Stark E, Huber G. Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire[J]. Journal of the Optical Society of America B, 3, 134-139(1986).

    [32] Evans J W, Harris T R, Turner E J et al. Re-absorption and nonradiative energy transfer in vibronic laser gain media[J]. Optical Engineering, 60, 056103(2021).

    [33] Wang F Y, Liang F, Liu W et al. Anion-centered polyhedron strategy for strengthening photon emission induced by electron-phonon coupling[J]. Inorganic Chemistry, 61, 4071-4079(2022).

    [34] Basiev T T, Mirov S B, Osiko V V. Room-temperature color center lasers[J]. IEEE Journal of Quantum Electronics, 24, 1052-1069(1988).

    [35] Fritz B, Menke E. Laser effect in KCl with FA(Li) centers[J]. Solid State Communications, 3, 61-63(1965).

    [36] Gusev Y L, Marennikov S I, Chebotayev V P. Tunable laser via F+2 and F-2 colour centers in the spectral region 0.88-1.25 μm[J]. Applied Physics, 14, 121-122(1977).

    [37] Martynovich E F, Baryshnikov V I, Grigorov V A. Lasing in Al2O3 color centers at room temperature in the visible[J]. Optics Communications, 53, 257-258(1985).

    [38] Martynovich E F, Tokarev A G, Grigorov V A. Al2O3 color center lasing in near infrared at 300 K[J]. Optics Communications, 53, 254-256(1985).

    [39] Rand S C, Deshazer L G. Visible color-center laser in diamond[J]. Optics Letters, 10, 481-483(1985).

    [40] Boĭko B B, Shkadarevich A P, Zhdanov É A et al. Lasing due to color centers in an Al2O3: Mg crystal[J]. Soviet Journal of Quantum Electronics, 17, 581-582(1987).

    [41] Gellermann W, Luty F, Pollock C R. Optical properties and stable, broadly tunable cw laser operation of new FA-type centers in Tl+-doped alkali halides[J]. Optics Communications, 39, 391-395(1981).

    [42] Baldacchini G, Ciaramella E, Cremona M et al. Zero-phonon lines in e--irradiated KCl: Tl[J]. Solid State Communications, 82, 493-496(1992).

    [43] Hörsch G, Paus H J. A new color center laser on the basis of lead-doped KMgF3[J]. Optics Communications, 60, 69-73(1986).

    [44] Dianov E M. Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers[J]. Light: Science & Applications, 1, e12(2012).

    [45] Bufetov I A, Melkumov M A, Firstov S V et al. Bi-doped optical fibers and fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 111-125(2014).

    [46] Thipparapu N K, Wang Y, Wang S et al. Bi-doped fiber amplifiers and lasers[J]. Optical Materials Express, 9, 2446-2465(2019).

    [47] Chen Q Q, Zhang F T, Chen Z et al. Near-infrared luminescence property of Te-doped zinc phosphate glasses[J]. Journal of Non-Crystalline Solids, 458, 76-79(2017).

    [48] Fujimoto Y, Nakatsuka M. Infrared luminescence from bismuth-doped silica glass[J]. Japanese Journal of Applied Physics, 40, L279-L281(2001).

    [49] Dianov E M, Dvoyrin V V, Mashinsky V M et al. CW bismuth fibre laser[J]. Quantum Electronics, 35, 1083-1084(2005).

    [50] Khonthon S, Morimoto S, Arai Y et al. Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics[J]. Journal of the Ceramic Society of Japan, 115, 259-263(2007).

    [51] Alyshev S V, Ryumkin K E, Shubin A V et al. Fibre laser based on tellurium-doped active fibre[J]. Quantum Electronics, 44, 95-97(2014).

    [52] Johnson L F, Dietz R E, Guggenheim H J. Optical maser oscillation from Ni2+ in MgF2 involving simultaneous emission of phonons[J]. Physical Review Letters, 11, 318-320(1963).

    [53] McCumber D E. Theory of phonon-terminated optical masers[J]. Physical Review, 134, A299-A306(1964).

    [54] Johnson L F, Guggenheim H J, Thomas R A. Phonon-terminated optical masers[J]. Physical Review, 149, 179-185(1966).

    [55] Johnson L F, Dietz R E, Guggenheim H J. Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2[J]. Applied Physics Letters, 5, 21-22(1964).

    [56] Brauch U, Dürr U. Vibronic laser action of V2+∶CsCaF3[J]. Optics Communications, 55, 35-40(1985).

    [57] Moulton P. An investigation of the Co∶MgF2 laser system[J]. IEEE Journal of Quantum Electronics, 21, 1582-1595(1985).

    [58] Walling J C, Jenssen H P, Morris R C et al. Tunable-laser performance in BeAl2O4∶Cr3+[J]. Optics Letters, 4, 182-183(1979).

    [59] Moulton P. Ti-doped sapphire: tunable solid-state laser[J]. Optics News, 8, 9(1982).

    [60] Moulton P F. Tunable solid-state lasers[J]. Proceedings of the IEEE, 80, 348-364(1992).

    [61] Demirbas U, Eggert S, Leitenstorfer A. Compact and efficient Cr∶LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach[J]. Journal of the Optical Society of America B, 29, 1894-1903(2012).

    [62] Demirbas U, Baali I. Power and efficiency scaling of diode pumped Cr: LiSAF lasers: 770‒1110 nm tuning range and frequency doubling to 387‒463 nm[J]. Optics Letters, 40, 4615-4618(2015).

    [63] Demirbas U. Cr: Colquiriite Lasers: current status and challenges for further progress[J]. Progress in Quantum Electronics, 68, 100227(2019).

    [64] Kück S, Petermann K, Pohlmann U et al. Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5-xO12[J]. Applied Physics B, 58, 153-156(1994).

    [65] Petričević V, Gayen S K, Alfano R R et al. Laser action in chromium-doped forsterite[J]. Applied Physics Letters, 52, 1040-1042(1988).

    [66] Baryshevskii V G, Korzhik M V, Kimaev A E et al. Tunable chromium forsterite laser in the near IR region[J]. Journal of Applied Spectroscopy, 53, 675-676(1990).

    [67] Slack G A, O’Meara B M. Infrared luminescence of Fe2+ in ZnS[J]. Physical Review, 163, 335-341(1967).

    [68] DeLoach L, Page R, Wilke G D. Properties of transition metal-doped zinc chalcogenide crystals for tunable IR laser radiation[C], LM4(1995).

    [69] DeLoach L D, Page R H, Wilke G D et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media[J]. IEEE Journal of Quantum Electronics, 32, 885-895(1996).

    [70] Wagner G J, Carrig T J, Page R H et al. Continuous-wave broadly tunable Cr2+∶ZnSe laser[J]. Optics Letters, 24, 19-21(1999).

    [71] Sorokin E, Sorokina I T, Mirov M S et al. Ultrabroad continuous-wave tuning of ceramic Cr∶ZnSe and Cr∶ZnS lasers[C], AMC2(2010).

    [72] Adams J J, Bibeau C, Page R H et al. 4.0-4.5-μm lasing of Fe∶ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 24, 1720-1722(1999).

    [73] Akimov V A, Voronov A A, Kozlovskii V I et al. Efficient IR Fe∶ZnSe laser continuously tunable in the spectral range from 3.77 to 4.40 μm[J]. Quantum Electronics, 34, 912-914(2004).

    [74] Fedorov V, Martyshkin D, Karki K et al. Q-switched and gain-switched Fe∶ZnSe lasers tunable over 3.60‒5.15 µm[J]. Optics Express, 27, 13934-13941(2019).

    [75] Frolov M P, Korostelin Y V, Kozlovsky V I et al. Tunable in the range of 4.5-6.8 µm room temperature single-crystal Fe∶CdTe laser pumped by Fe∶ZnSe laser[J]. Optics Express, 28, 17449-17456(2020).

    [76] Ma J, Qin Z P, Xie G Q et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm‒3.5 μm spectral region[J]. Applied Physics Reviews, 6, 021317(2019).

    [77] Sennaroglu A, Morova Y. Divalent (Cr2+), trivalent (Cr3+), and tetravalent (Cr4+) chromium ion-doped tunable solid-state lasers operating in the near and mid-infrared spectral regions[J]. Applied Physics B, 128, 9(2022).

    [78] Johnson L F, Guggenheim H J. Laser emission at 3 μm from Dy3+ in BaY2F8[J]. Applied Physics Letters, 23, 96-98(1973).

    [79] Johnson L, Guggenheim H. Electronic- and phonon-terminated laser emission from Ho3+ in BaY2F8[J]. IEEE Journal of Quantum Electronics, 10, 442-449(1974).

    [80] Nakamura S, Yoshioka H, Ogawa T et al. Broadly tunable Yb3+-doped Y3Al5O12 ceramic laser at room temperature[J]. Japanese Journal of Applied Physics, 48, 060205(2009).

    [81] Peters R, Kränkel C, Petermann K et al. Broadly tunable high-power Yb∶Lu2O3 thin disk laser with 80% slope efficiency[J]. Optics Express, 15, 7075-70782(2007).

    [82] Stoneman R C, EfficientEsterowitz L.. tunablebroadly, Tmlaser-pumped∶ YAG and Tm∶YSGG cw lasers[J]. Optics Letters, 15, 486-488(1990).

    [83] Sudesh V, Piper J A. Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 μm[J]. IEEE Journal of Quantum Electronics, 36, 879-884(2000).

    [84] Demirbas U, Thesinga J, Beyatli E et al. Continuous-wave Tm∶YLF laser with ultrabroad tuning (1772-2145 nm)[J]. Optics Express, 30, 41219-41239(2022).

    [85] Pinto J F, Rosenblatt G H, Esterowitz L. Tm3+∶YLF laser continuously tunable between 2.20 and 2.46 μm[J]. Optics Letters, 19, 883-885(1994).

    [86] Ehrlich D J, Moulton P F, Osgood R M, Jr. Ultraviolet solid-state Ce∶YLF laser at 325 nm[J]. Optics Letters, 4, 184-186(1979).

    [87] Pinto J F, Esterowitz L, Quarles G J. High performance Ce3+∶LiSrAlF6/LiCaAlF6 UV lasers with extended tunability[J]. Electronics Letters, 31, 2009-2011(1995).

    [88] McGonigle A J S, Girard S, Coutts D W et al. 10 kHz continuously tunable Ce∶LiLuF4 laser[J]. Electronics Letters, 35, 1640-1641(1999).

    [89] Ono S, Suzuki Y, Kozeki T et al. High-energy, all-solid-state, ultraviolet laser power-amplifier module design and its output-energy scaling principle[J]. Applied Optics, 41, 7556-7560(2002).

    [90] Sharp A O. Hybrid-mode-locked Ce∶LiCAF lasers[D](2021).

    [91] Hang Y, Xu M, Zhang L H et al. Domestic large sized Ti: sapphire crystal assists the world’s strongest pulsed laser amplification output[J]. Journal of Synthetic Crystals, 48, 809-811(2019).

    [92] Blasse G. Interaction between optical centers and their surroundings: an inorganic chemist’s approach[J]. Advances in Inorganic Chemistry, 35, 319-402(1990).

    [93] Fang Q N, Lu D Z, Yu H H et al. Self-frequency-doubled vibronic yellow Yb∶YCOB laser at the wavelength of 570 nm[J]. Optics Letters, 41, 1002-1005(2016).

    [94] Liang F, He C, Lu D Z et al. Multiphonon-assisted lasing beyond the fluorescence spectrum[J]. Nature Physics, 18, 1312-1316(2022).

    [95] Si H C, Liang F, Lu D Z et al. Efficient direct laser generation by three-phonon-assisted transition with Yb∶YCOB crystal[J]. Advanced Photonics Research, 4, 2300092(2023).

    [96] Toncelli A. Light in the darkness[J]. Nature Physics, 18, 1271-1272(2022).

    [97] Cheng Y L, Liang F, Lu D Z et al. Phonon engineering in Yb∶La2CaB10O19 crystal for extended lasing beyond the fluorescence spectrum[J]. Light: Science & Applications, 12, 203(2023).

    [98] Fu Y, Liang F, Lu D Z et al. Multiphonon-assisted continuous-wave tunable vibronic laser in Yb∶LuScO3 crystal[J]. Chinese Optics Letters, 21, 091402(2023).

    [99] Lin Z L, Xue W Z, Zeng H J et al. Kerr-lens mode-locked ytterbium-activated orthoaluminate laser[J]. Optics Letters, 47, 3027-3030(2022).

    [100] Loiko P, Chen W D, Wang L et al. Multiphonon-assisted emission of rare-earth ions: towards pulse shortening in mode-locked lasers[C], AM2A.2(2022).

    [101] Suzuki A, Kalusniak S, Ganschow S et al. Kerr-lens mode-locked 49-fs Tm3+∶YScO3 single-crystal laser at 2.1 µm[J]. Optics Letters, 48, 4221-4224(2023).

    [102] Suzuki A. Ultrashort pulse generation in 2-µm laser oscillators based on Tm-doped sesquioxides[D](2023).

    [103] Loiko P, Mateos X, Choi S Y et al. Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes[J]. Journal of the Optical Society of America B, 33, D19-D27(2016).

    [104] Du J H, Chen X F, Yu H H et al. High-power continuous-wave self-frequency-doubled monolithic laser[J]. Optics Letters, 47, 6393-6396(2022).

    [105] Lu D Z, Fang Q N, Yu X S et al. Power scaling of the self-frequency-doubled quasi-two-level Yb∶YCOB laser with a 30% slope efficiency[J]. Optics Letters, 44, 5157-5160(2019).

    [106] Thoss A. New diodepumped solid-state laser emits in the yellow region[J]. Laser Focus World, 55, 14-16(2019).

    [107] Lu D Z, Fang Q N, Yu H H et al. Yb∶YCOB self-frequency-doubled yellow laser crystal and device[J]. Journal of the Chinese Ceramic Society, 49, 246-249(2021).

    [108] Si H C, Liang F, Zhou Y et al. Monolithic 591-nm laser with cooperative multiphonon-coupling and nonlinear frequency-doubling[J]. Optics Letters, 48, 4913-4916(2023).

    Fei Liang, Cheng He, Yanfeng Chen, Haohai Yu, Huaijin Zhang. China's Top 10 Optical Breakthroughs: Electron-Phonon Coupling Effect and Laser Wavelength Extension[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2300001
    Download Citation