• Advanced Photonics
  • Vol. 5, Issue 6, 064001 (2023)
Kirill Koshelev†、*, Pavel Tonkaev, and Yuri Kivshar*
Author Affiliations
  • Australian National University, Research School of Physics, Nonlinear Physics Center, Canberra, Australian Capital Territory, Australia
  • show less
    DOI: 10.1117/1.AP.5.6.064001 Cite this Article Set citation alerts
    Kirill Koshelev, Pavel Tonkaev, Yuri Kivshar. Nonlinear chiral metaphotonics: a perspective[J]. Advanced Photonics, 2023, 5(6): 064001 Copy Citation Text show less
    References

    [1] L. D. Barron. Molecular Light Scattering and Optical Activity(2009).

    [2] O. Kfir et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv., 3, eaao4641(2017).

    [3] B. Ranjbar, P. Gill. Circular dichroism techniques: biomolecular and nanostructural analyses-a review. Chem. Biol. Drug Des., 74, 101-120(2009).

    [4] N. Berova, K. Nakanishi, R. W. Woody. Circular Dichroism: Principles and Applications(2000).

    [5] J. Pendry. A chiral route to negative refraction. Science, 306, 1353-1355(2004).

    [6] B. Wang et al. Chiral metamaterials: simulations and experiments. J. Opt. A: Pure Appl. Opt., 11, 114003(2009).

    [7] S. S. Oh, O. Hess. Chiral metamaterials: enhancement and control of optical activity and circular dichroism. Nano Converg., 2, 24(2015).

    [8] A. Papakostas et al. Optical manifestations of planar chirality. Phys. Rev. Lett., 90, 107404(2003).

    [9] M. Kuwata-Gonokami et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett., 95, 227401(2005).

    [10] K. Konishi et al. Observation of extraordinary optical activity in planar chiral photonic crystals. Opt. Express, 16, 7189-7196(2008).

    [11] S. Volkov et al. Optical activity in diffraction from a planar array of achiral nanoparticles. Phys. Rev. A, 79, 043819(2009).

    [12] V. K. Valev et al. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater., 25, 2517-2534(2013).

    [13] M. Hentschel et al. Chiral plasmonics. Sci. Adv., 3, e1602735(2017).

    [14] M. V. Gorkunov, A. A. Antonov, Y. S. Kivshar. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett., 125, 093903(2020).

    [15] A. Overvig, N. Yu, A. Alù. Chiral quasi-bound states in the continuum. Phys. Rev. Lett., 126, 073001(2021).

    [16] X. Zhang et al. Chiral emission from resonant metasurfaces. Science, 377, 1215-1218(2022).

    [17] E. Mohammadi et al. Nanophotonic platforms for enhanced chiral sensing. ACS Photonics, 5, 2669-2675(2018).

    [18] M. L. Solomon et al. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics, 6, 43-49(2018).

    [19] M. Wang et al. Characterization of orbital angular momentum quantum states empowered by metasurfaces. Nano Lett., 23, 3921-3928(2023).

    [20] T. Verbiest, M. Kauranen, A. Persoons. Light-polarization-induced optical activity. Phys. Rev. Lett., 82, 3601-3604(1999).

    [21] T. Petralli-Mallow et al. Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study. J. Phys. Chem., 97, 1383-1388(1993).

    [22] J. Byers, H. Yee, J. Hicks. A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers. J. Chem. Phys., 101, 6233-6241(1994).

    [23] J. J. Maki, M. Kauranen, A. Persoons. Surface second-harmonic generation from chiral materials. Phys. Rev. B, 51, 1425-1434(1995).

    [24] T. Verbiest et al. Strong enhancement of nonlinear optical properties through supramolecular chirality. Science, 282, 913-915(1998).

    [25] L. M. Haupert, G. J. Simpson. Chirality in nonlinear optics. Annu. Rev. Phys. Chem., 60, 345-365(2009).

    [26] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [27] K. Konishi, T. Kan, M. Kuwata-Gonokami. Tunable and nonlinear metamaterials for controlling circular polarization. J. Appl. Phys., 127, 230902(2020).

    [28] S. P. Rodrigues et al. Review of optically active and nonlinear chiral metamaterials. J. Nanophotonics, 16, 020901(2022).

    [29] B. Luk’Yanchuk et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [30] K. Koshelev, Y. Kivshar. Dielectric resonant metaphotonics. ACS Photonics, 8, 102-112(2020).

    [31] J. Mock et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys., 116, 6755-6759(2002).

    [32] V. Giannini, G. Vecchi, J. G. Rivas. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys. Rev. Lett., 105, 266801(2010).

    [33] Y. Liang et al. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett., 20, 6351-6356(2020).

    [34] I. Staude et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano, 7, 7824-7832(2013).

    [35] G. Zograf et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photonics, 9, 567-574(2022).

    [36] E. Tiguntseva et al. Room-temperature lasing from Mie-resonant nonplasmonic nanoparticles. ACS Nano, 14, 8149-8156(2020).

    [37] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [38] V. G. Kravets et al. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev., 118, 5912-5951(2018).

    [39] A. Overvig, A. Alù. Diffractive nonlocal metasurfaces. Laser Photonics Rev., 16, 2100633(2022).

    [40] M. S. Bin-Alam et al. Ultra-high-q resonances in plasmonic metasurfaces. Nat. Commun., 12, 974(2021).

    [41] C. Kern, M. Zürch, C. Spielmann. Limitations of extreme nonlinear ultrafast nanophotonics. Nanophotonics, 4, 303-323(2015).

    [42] K. Koshelev et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [43] Z. Liu et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2019).

    [44] J. Jin et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature, 574, 501-504(2019).

    [45] Y. Chen et al. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474-478(2023).

    [46] T. Shi et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun., 13, 4111(2022).

    [47] M. F. Limonov et al. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [48] E. Melik-Gaykazyan et al. From Fano to quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett., 21, 1765-1771(2021).

    [49] B. K. Canfield et al. Chirality arising from small defects in gold nanoparticle arrays. Opt. Express, 14, 950-955(2006).

    [50] B. K. Canfield et al. A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures. J. Opt. A: Pure Appl. Opt., 8, S278(2006).

    [51] M. J. Huttunen et al. Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers. Opt. Mater. Express, 1, 46-56(2011).

    [52] K. Konishi et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Phys. Rev. Lett., 112, 135502(2014).

    [53] S. Kujala et al. Multipole interference in the second-harmonic optical radiation from gold nanoparticles. Phys. Rev. Lett., 98, 167403(2007).

    [54] S. Kujala et al. Multipolar analysis of second-harmonic radiation from gold nanoparticles. Opt. Express, 16, 17196-17208(2008).

    [55] M. Zdanowicz et al. Effective medium multipolar tensor analysis of second-harmonic generation from metal nanoparticles. New J. Phys., 13, 023025(2011).

    [56] R. Czaplicki et al. Dipole limit in second-harmonic generation from arrays of gold nanoparticles. Opt. Express, 19, 26866-26871(2011).

    [57] H. Simon, N. Bloembergen. Second-harmonic light generation in crystals with natural optical activity. Phys. Rev., 171, 1104(1968).

    [58] O. E. Alon, V. Averbukh, N. Moiseyev. Selection rules for the high harmonic generation spectra. Phys. Rev. Lett., 80, 3743-3746(1998).

    [59] T. Higuchi et al. Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO. Phys. Rev. Lett., 106, 047401(2011).

    [60] V. K. Valev et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett., 9, 3945-3948(2009).

    [61] S. Chen et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys. Rev. Lett., 113, 033901(2014).

    [62] G. Li et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater., 14, 607-612(2015).

    [63] F. Wang, H. Harutyunyan. Observation of a giant nonlinear chiro-optical response in planar plasmonic–photonic metasurfaces. Adv. Opt. Mater., 7, 1900744(2019).

    [64] V. Valev et al. Asymmetric optical second-harmonic generation from chiral G-shaped gold nanostructures. Phys. Rev. Lett., 104, 127401(2010).

    [65] V. K. Valev et al. Nonlinear superchiral meta-surfaces: tuning chirality and disentangling non-reciprocity at the nanoscale. Adv. Mater., 26, 4074-4081(2014).

    [66] E. Mamonov et al. Anisotropy versus circular dichroism in second harmonic generation from fourfold symmetric arrays of G-shaped nanostructures. Phys. Rev. B, 89, 121113(2014).

    [67] Y. Tang et al. Quasicrystal photonic metasurfaces for radiation controlling of second harmonic generation. Adv. Mater., 31, 1901188(2019).

    [68] M. Ren et al. Giant nonlinear optical activity in a plasmonic metamaterial. Nat. Commun., 3, 833(2012).

    [69] S. Chen et al. Giant nonlinear optical activity of achiral origin in planar metasurfaces with quadratic and cubic nonlinearities. Adv. Mater., 28, 2992-2999(2016).

    [70] M. Tymchenko et al. Gradient nonlinear Pancharatnam-Berry metasurfaces. Phys. Rev. Lett., 115, 207403(2015).

    [71] G. Li et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett., 17, 7974-7979(2017).

    [72] S. D. Gennaro et al. Nonlinear Pancharatnam–Berry phase metasurfaces beyond the dipole approximation. ACS Photonics, 6, 2335-2341(2019).

    [73] X. Hong et al. Chiral third-harmonic metasurface for multiplexed holograms. Nano Lett., 22, 8860-8866(2022).

    [74] D. Kim et al. Giant nonlinear circular dichroism from intersubband polaritonic metasurfaces. Nano Lett., 20, 8032-8039(2020).

    [75] K. Konishi et al. Circularly polarized vacuum ultraviolet coherent light generation using a square lattice photonic crystal nanomembrane. Optica, 7, 855-863(2020).

    [76] L. Ohnoutek et al. Third-harmonic Mie scattering from semiconductor nanohelices. Nat. Photonics, 16, 126-133(2022).

    [77] K. Frizyuk et al. Nonlinear circular dichroism in Mie-resonant nanoparticle dimers. Nano Lett., 21, 4381-4387(2021).

    [78] M. L. Tseng et al. Vacuum ultraviolet nonlinear metalens. Sci. Adv., 8, eabn5644(2022).

    [79] J. Collins et al. First observation of optical activity in hyper-Rayleigh scattering. Phys. Rev. X, 9, 011024(2019).

    [80] L. Ohnoutek et al. Optical activity in third-harmonic Rayleigh scattering: a new route for measuring chirality. Laser Photonics Rev., 15, 2100235(2021).

    [81] A. Nikitina, A. Nikolaeva, K. Frizyuk. Nonlinear circular dichroism in achiral dielectric nanoparticles. Phys. Rev. B, 107, L041405(2023).

    [82] M. Finazzi et al. Selection rules for second-harmonic generation in nanoparticles. Phys. Rev. B, 76, 125414(2007).

    [83] K. Frizyuk et al. Second-harmonic generation in Mie-resonant dielectric nanoparticles made of noncentrosymmetric materials. Phys. Rev. B, 99, 075425(2019).

    [84] L. Kang, Y. Wu, D. H. Werner. Nonlinear chiral metasurfaces based on the optical Kerr effect. Adv. Opt. Mater., 11, 2202658(2023).

    [85] K.-H. Kim, J.-R. Kim. Dielectric chiral metasurfaces for second-harmonic generation with strong circular dichroism. Ann. Phys., 532, 2000078(2020).

    [86] K. Koshelev et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 6, 1639-1644(2019).

    [87] I. S. Sinev et al. Observation of ultrafast self-action effects in quasi-BIC resonant metasurfaces. Nano Lett., 21, 8848-8855(2021).

    [88] M. Gandolfi et al. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces. Phys. Rev. A, 104, 023524(2021).

    [89] Q.-S. Liu et al. Dual-band chiral nonlinear metasurface supported by quasibound states in the continuum. Ann. Phys., 534, 2200263(2022).

    [90] K. Koshelev et al. Resonant chiral effects in nonlinear dielectric metasurfaces. ACS Photonics, 10, 298-306(2023).

    [91] N. Bernhardt et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett., 20, 5309-5314(2020). https://doi.org/10.1021/acs.nanolett.0c01603

    [92] J. Kühne et al. Fabrication robustness in BIC metasurfaces. Nanophotonics, 10, 4305-4312(2021).

    [93] L. Fagiani et al. Modelling and nanofabrication of chiral dielectric metasurfaces. Micro Nano Eng., 19, 100187(2023).

    [94] G. Vampa et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys., 13, 659-662(2017).

    [95] M. R. Shcherbakov et al. Generation of even and odd high harmonics in resonant metasurfaces using single and multiple ultra-intense laser pulses. Nat. Commun., 12, 4185(2021).

    [96] P. Tonkaev et al. Observation of enhanced generation of a fifth harmonic from halide perovskite nonlocal metasurfaces. ACS Photonics, 10, 1367-1375(2023).

    [97] O. Kfir et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nat. Photonics, 9, 99-105(2015).

    [98] O. Neufeld, O. Cohen. Optical chirality in nonlinear optics: application to high harmonic generation. Phys. Rev. Lett., 120, 133206(2018).

    [99] A. S. Solntsev, G. S. Agarwal, Y. S. Kivshar. Metasurfaces for quantum photonics. Nat. Photonics, 15, 327-336(2021).

    [100] Y. Wu et al. Optical spin–orbit interaction in spontaneous parametric downconversion. Optica, 10, 538-543(2023).

    [101] D. G. Baranov, C. Schäfer, M. V. Gorkunov. Toward molecular chiral polaritons. ACS Photonics, 10, 2440-2455(2023).

    [102] M. Schäferling. Chiral nanophotonics. Springer Ser. Opt. Sci., 205, 159(2017).

    [103] K. Voronin et al. Single-handedness chiral optical cavities. ACS Photonics, 9, 2652-2659(2022).

    [104] S. Kim et al. Chiral electroluminescence from thin-film perovskite metacavities. Sci. Adv., 9, eadh0414(2023).

    [105] D. Smirnova et al. Nonlinear topological photonics. Appl. Phys. Rev., 7, 021306(2020).

    Kirill Koshelev, Pavel Tonkaev, Yuri Kivshar. Nonlinear chiral metaphotonics: a perspective[J]. Advanced Photonics, 2023, 5(6): 064001
    Download Citation