• Acta Photonica Sinica
  • Vol. 46, Issue 5, 527001 (2017)
FENG Fei*, XU Jiang-meng, MA Jing-ting, LIU Zun-long, and ZHANG Wei-jie
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20174605.0527001 Cite this Article
    FENG Fei, XU Jiang-meng, MA Jing-ting, LIU Zun-long, ZHANG Wei-jie. Quantum Lidar Based on Squeezed Sates of Light[J]. Acta Photonica Sinica, 2017, 46(5): 527001 Copy Citation Text show less
    References

    [1] DUTTON Z, SHAPIRO J H, GUHA S. Ladarresolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification[J]. Journal of the Optical Society of America B, 2010, 27(6): A63-A72.

    [2] LANZAGORTA M. Quantumradar[M]. ZHOU Wan-xing, WU Ming-ya, HU Ming-chun, et al. transl. Beijing: Publishing House of Electronics Industry, 2013.

    [3] WASILOUSKY P A, SMITH K H, GLASSER R, et al. Quantum enhancement of a coherent LADAR receiver using phase-sensitive amplification[C]. SPIE, 2011, 8163: 816305.

    [4] ZHOU Cheng-hong, QIN Wei-ping. An overview of radar system based on quantum technology[J]. Radar Science and Technology, 2015, 13(5): 457-462.

    [5] GE Yue-tao, JIANG Qi. Study of technology development of quantum radar[J]. Tactical Missile Technology, 2014, 4(5): 5-9.

    [6] JIANG Tao, SUN Jun. The principle and development of quantum radar detection target[J]. Journal of CAEIT, 2014, 9(1): 10-16.

    [7] XIAO Min, WU Ling-an, KIMBLE H J. Precision measurement beyond the shot-noise limit[J]. Physical Review Letters, 1987, 59(3): 278-281.

    [8] KHALAIDOVSKI A, VAHLBRUCH H, LASTZKA N, et al. Long-term stable squeezed vacuum state of light for gravitational wave detectors[J].Classical and Quantum Gravity, 2011, 29: 075001.

    [9] CHELKOWSKI S. Squeezed light and laser interferometric gravitational wave detectors[D]. Ph. D. thesis, Hannover University, 2007.

    [10] KHALAIDOVSKI A. Beyond the quantum limit a squeezed-light laser in GEO 600[D]. Ph. D. Thesis, Gottfried Wilhelm Leibniz University Hannover, 2011.

    [11] JANOUSEK J. Investigation of non-classical light and its application in ultrasensitive measurements[D]. Ph. D. thesis, Technical University of Denmark, 2007.

    [12] BACHOR H-A, RALPH T C. A guide to experiments in quantum optics[M]. Weinheim: Wiley-VCH Verlag GmbH & Co., KGa, 2003.

    [13] CHELKOWSKI S. Squeezed light and laser interferometric gravitational wave detectors[D]. Ph. D. thesis, Hannover University, 2007.

    [14] MCKENZIE K. Squeezing in the audio gravitational wave detection band[D]. Ph. D. thesis, Australian National University, 2008.

    [15] MABUCHI H, POLZIK E S, KIMBLE H J. Blue-light induced infrared absorption in KNbO3[J]. Journal of the Optical Society of America B, 1994, 11(11): 2023-2029.

    [16] LI Yong-qing, GUZUN D, XIAO Min. Sub-shot-noise-limited optical heterodyne detection using an amplitude-squeezed local oscillator[J]. Physical Review Letters, 1999, 82(26): 5225-5228.

    [17] LANZAGORTA M. Quantan radar crossscetions[C]. SPIE, 2010, 7727: 77270K.

    [18] LOPAEVA E D, DEGIOVANNI I P, OLIVARES S. Experimental realization of quantum illumination[J]. Physical Review Letters, 2013, 110(15): 153-603.

    [19] DAI Yong-jiang, LIDAR technology[M]. Beijing: Publishing House of Electronics Industry,2010.

    [20] AN Yu-ying, ZENG Xiao-dong. Photoelectric detection principle[M]. Xi′an: http://www.xduph.com, 2004.

    [21] BURDGE G, DEIBNER G, SHAPRIO J, et al. Quantum sensors program[R]. Final technical report, 2009, AFRL-RI-RS-TR-2009-208.

    FENG Fei, XU Jiang-meng, MA Jing-ting, LIU Zun-long, ZHANG Wei-jie. Quantum Lidar Based on Squeezed Sates of Light[J]. Acta Photonica Sinica, 2017, 46(5): 527001
    Download Citation