[1] EIJK C W E VAN. Inorganic scintillators for thermal neutron detection. IEEE Transactions on Nuclear Science, 2242(2012).
[2] G REN. Development history of inorganic scintillation crystals in China. Journal of Synthetic Crystals, 1373(2019).
[3] J YU, C DIAO. Research advances of halide scintillation crystals. Chinese Journal of Rare Metals, 1291(2016).
[4] D S MCGREGOR. Materials for gamma-ray spectrometers: inorganic scintillators. Annual Review of Materials Research, 245(2018).
[5] Q WANG, G REN. Recent development on elpasolite scintillation crystals for neutron detection. Journal of the Chinese Ceramic Society, 457(2016).
[6] K YANG K, P R MENGE, V OUSPENSKI. Scintillation properties and temperature responses of Cs2LiLaBr6:Ce3+(2013).
[7] LOEF E V D VAN, P DORENBOS, EIJK C W E VAN et al. Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6(X = Cl, Br). Journal of Physics: Condensed Matter, 8481(2002).
[8] J HE, W LI, Q WEI et al. Growth and properties of 1-inch Cs2LiLaBr6:Ce scintillation crystals. Journal of Synthetic Crystals, 1879(2021).
[9] K E MESICK, D D COUPLAND, L STONEHILL et al. Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 139(2017).
[10] F QUARATI, M ALEKHIN, K KRÄMER et al. Co-doping of CeBr3 scintillator detectors for energy resolution enhancement. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 655(2014).
[11] P GUSS, M E FOSTER, B M WONG et al. Results for aliovalent doping of CeBr3 with Ca2+. Journal of Applied Physics, 034908(2014).
[12] S PANWAR, I MAZUMDAR, R SARIYAL et al. Characterization of a Sr co-doped LaBr3: Ce detector for γ-ray spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 164567(2020).
[13] Y WU, Q LI, S JONES et al. Defect engineering by codoping in KCaI3:Eu2+ single-crystalline scintillators. Physical Review Applied, 034011(2017).
[14] F L RUTA, S SWIDER, S LAM et al. Understanding phase equilibria and segregation in Bridgman growth of Cs2LiYCl6 scintillator. Journal of Materials Research, 2373(2017).
[15] V SAGAR, L SURESH, T VINODKUMAR et al. Zirconium doped ceria nanoparticles: an efficient and reusable catalyst for a green multicomponent synthesis of novel phenyldiazenyl- chromene derivatives using aqueous medium. ACS Sustainable Chemistry & Engineering, 2376(2016).
[16] J LIN, Q WEI, D ZHANG et al. Crystal growth and scintillation properties of non-stoichiometric Cs2LiLaBr6:Ce. Crystal Research and Technology, 1900047(2019).
[17] Y TONG, Q WEI, W Li et al. Effects of Ce3+substitution on the local structure of cerium and scintillation properties of CLLBC:Ce crystals. Journal of Crystal Growth, 126940(2022).
[18] K J LAIDLER. The development of the Arrhenius equation. Journal of chemical Education, 494(1984).
[19] U SHIRWADKAR, J GLODO, LOEF E V VAN et al. Scintillation properties of Cs2LiLaBr6(CLLB) crystals with varying Ce3+concentration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 268(2011).
[20] L WANG, Q P DENG, H HU et al. Glyphosate induces benign monoclonal gammopathy and promotes multiple myeloma progression in mice. Journal of Hematology & Oncology, 70(2019).
[21] K YANG, P R MENGE, V OUSPENSKI. Li co-doped NaI:Tl (NaIL)―a large volume neutron-gamma scintillator with exceptional pulse shape discrimination. IEEE Transactions on Nuclear Science, 2406(2017).
[22] D ÅBERG, B SADIGH, A SCHLEIFE et al. Origin of resolution enhancement by co-doping of scintillators: insight from electronic structure calculations. Applied Physics Letters, 219908(2014).
[23] N TRULS. A Kröger-Vink compatible notation for defects in inherently defective sublattices. Journal of Korean Ceramic Society, 19(2010).
[24] Y WU, Q LI, D J RUTSTROM et al. Tailoring the properties of europium-doped potassium calcium iodide scintillators through defect engineering. Physica Status Solidi (RRL)-Rapid Research Letters, 1700403(2018).