• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516016 (2022)
Liaolin Zhang1、*, Siyu Zhu1, Jianan Huang2, Jia Liu2, Jianhui Huang1, and Weixiong You2
Author Affiliations
  • 1College of Rare Earths, Jiangxi University of Science and technology, Ganzhou 341000, Jiangxi , China
  • 2Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and technology, Ganzhou 341000, Jiangxi , China
  • show less
    DOI: 10.3788/LOP202259.1516016 Cite this Article Set citation alerts
    Liaolin Zhang, Siyu Zhu, Jianan Huang, Jia Liu, Jianhui Huang, Weixiong You. Research Progress on Blue LD-Pumped Rare Earths Doped Visible Fiber Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516016 Copy Citation Text show less
    References

    [1] Li L, Zhang Y, Li M X et al. Current application and progress of laser technology in ophthalmology[J]. Chinese Journal of Lasers, 49, 0507103(2022).

    [2] Zhang L H, Xia K G, Ma X H et al. Detection method for 248 nm depolarizer independent of laser intensity fluctuation[J]. Chinese Journal of Lasers, 49, 0404003(2022).

    [3] Grubb S G, Bennett K W, Cannon R S et al. CW room-temperature blue upconversion fibre laser[J]. Electronics Letters, 28, 1243-1244(1992).

    [4] Xie P, Gosnell T R. Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions[J]. Optics Letters, 20, 1014-1016(1995).

    [5] Sandrock T, Scheife H, Heumann E et al. High-power continuous-wave upconversion fiber laser at room temperature[J]. Optics Letters, 22, 808-810(1997).

    [6] Allain J Y, Monerie M, Poignant H. Room temperature CW tunable green upconversion holmium fibre laser[J]. Electronics Letters, 26, 261-263(1990).

    [7] Booth I J, MacKechnie C J, Ventrudo B F. Operation of diode laser pumped Tm3+∶ZBLAN upconversion fiber laser at 482 nm[J]. IEEE Journal of Quantum Electronics, 32, 118-123(1996).

    [8] Farries M C, Morkel P R, Townsend J E. Samarium3+-doped glass laser operating at 651 nm[J]. Electronics Letters, 24, 709-711(1988).

    [9] Farries M C, Morkel P R, Townsend J E. Spectroscopic and lasing characteristics of samarium doped glass fibre[J]. IEE Proceedings J (Optoelectronics), 137, 318-322(1990).

    [10] Yamashita T, Ohishi Y. Amplification and lasing characteristics of Tb3+-doped fluoride fiber in the 0.54 µm band[J]. Japanese Journal of Applied Physics, 46, L991-L993(2007).

    [11] Smart R G, Carter J N, Tropper A C et al. CW room temperature operation of praseodymium-doped fluorozirconate glass fibre lasers in the blue-green, green and red spectral regions[J]. Optics Communications, 86, 333-340(1991).

    [12] Adam J L, Sibley W A, Gabbe D R. Optical absorption and emission of LiYF4∶Pr3+[J]. Journal of Luminescence, 33, 391-407(1985).

    [13] Fujimoto Y, Nakanishi J, Yamada T et al. Visible fiber lasers excited by GaN laser diodes[J]. Progress in Quantum Electronics, 37, 185-214(2013).

    [14] Richter A, Scheife H, Heumann E et al. Semiconductor laser pumping of continuous-wave Pr3+ doped ZBLAN fibre laser[J]. Electronics Letters, 41, 794-795(2005).

    [15] Fujimoto Y, Ishii O, Yamazaki M. Multi-colour laser oscillation in Pr3+-doped fluoro-aluminate glass fibre pumped by 442.6 nm GaN-semiconductor laser[J]. Electronics Letters, 45, 1301-1302(2009).

    [16] Okamoto H, Kasuga K, Hara I et al. Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode[J]. Optics Express, 17, 20227-20232(2009).

    [17] Nakanishi J, Yamada T, Fujimoto Y et al. High-power red laser oscillation of 311.4 mW in Pr3+-doped waterproof fluoro-aluminate glass fibre excited by GaN laser diode[J]. Electronics Letters, 46, 1285-1286(2010).

    [18] Okamoto H, Kasuga K, Kubota Y. Efficient 521 nm all-fiber laser: splicing Pr3+-doped ZBLAN fiber to end-coated silica fiber[J]. Optics Letters, 36, 1470-1472(2011).

    [19] Nakanishi J, Yamada T, Fujitomo Y et al. Watt-order output power at 638 nm in wavelength by direct oscillation with Pr-doped fiber laser[C], CM2N.4(2012).

    [20] Fujitomo Y, Murakami M, Nakanishi J et al. Visible lasers in waterproof fluoro-aluminate glass fibers excited by GaN laser diodes[C], AM2A.2(2013).

    [21] Kajikawa S, Terao T, Yoshida M et al. Single-mode visible laser oscillation in Pr-doped double-clad structured waterproof fluoro-aluminate glass fibre[J]. Electronics Letters, 52, 861-863(2016).

    [22] Fujimoto Y, Nakahara M, Binun P et al. 2 W single-mode visible laser oscillation in Pr-doped double-clad structured waterproof fluoro-aluminate glass fiber[C], 19538874(2019).

    [23] Kifle E, Starecki F, Loiko P et al. Watt-level visible laser in double-clad Pr3+-doped fluoride fiber pumped by a GaN diode[J]. Optics Letters, 46, 74-77(2021).

    [24] Lord M P, Fortin V, Maes F et al. 2.3 W monolithic fiber laser operating in the visible[J]. Optics Letters, 46, 2392-2395(2021).

    [25] Kojou J, Watanabe Y, Agrawal P et al. Wavelength tunable Q-switch laser in visible region with Pr3+-doped fluoride-glass fiber pumped by GaN diode laser[J]. Optics Communications, 290, 136-140(2013).

    [26] Li W S, Du T J, Lan J L et al. 716 nm deep-red passively Q-switched Pr∶ZBLAN all-fiber laser using a carbon-nanotube saturable absorber[J]. Optics Letters, 42, 671-674(2017).

    [27] Kajikawa S, Murakami T, Yoshida M et al. Visible Q-switched pulse generation in Pr-doped double-clad structured waterproof fluoro-aluminate glass fiber[C], 17333054(2017).

    [28] Wu D D, Quan C J, Guo Z R et al. Self Q-switched mode-locking in compact red Pr3+-doped ZBLAN fiber laser[J]. Journal of Optics, 20, 085501(2018).

    [29] Fujimoto Y, Suzuki T, Ochante R A M et al. Generation of orange pulse laser in waterproof fluoride glass fibre with graphene thin film[J]. Electronics Letters, 50, 1470-1472(2014).

    [30] Zhong Y L, Cai Z P, Wu D D et al. Passively Q-switched red Pr3+-doped fiber laser with graphene-oxide saturable absorber[J]. IEEE Photonics Technology Letters, 28, 1755-1758(2016).

    [31] Kajikawa S, Yoshida M, Ishii O et al. Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene[J]. Optics Communications, 424, 13-16(2018).

    [32] Marzahl D T, Reichert F, Metz P W et al. Efficient laser operation of diode-pumped Pr3+, Mg2+∶SrAl12O19[J]. Applied Physics B, 116, 109-113(2014).

    [33] Kränkel C, Marzahl D T, Moglia F et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 10, 548-568(2016).

    [34] Metz P W, Marzahl D T, Majid A et al. Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions[J]. Laser & Photonics Reviews, 10, 335-344(2016).

    [35] Chen H, Uehara H, Kawase H et al. Efficient visible laser operation of Tb: LiYF4 and LiTbF4[J]. Optics Express, 28, 10951-10959(2020).

    [36] Zhang L L, Peng M Y, Dong G P et al. An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser[J]. Optical Materials, 34, 1202-1207(2012).

    [37] Yamashita T, Qin G S, Suzuki T et al. A new green fiber laser using terbium-doped fluoride fiber[C], 10054033(2008).

    [38] Dorenbos P. The 5d level positions of the trivalent lanthanides in inorganic compounds[J]. Journal of Luminescence, 91, 155-176(2000).

    [39] Shaw L B, Cole B, Thielen P A et al. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber[J]. IEEE Journal of Quantum Electronics, 37, 1127-1137(2001).

    [40] Limpert J, Zellmer H, Riedel P et al. Laser oscillation in yellow and blue spectral range in Dy3+∶ZBLAN[J]. Electronics Letters, 36, 1386-1387(2000).

    [41] Fujimoto Y, Ishii O, Yamazaki M. Yellow laser oscillation in Dy3+-doped waterproof fluoro-aluminate glass fibre pumped by 398.8 nm GaN laser diodes[J]. Electronics Letters, 46, 586-587(2010).

    [42] Wang H J, Zou J H, Dong C C et al. High-efficiency, yellow-light Dy3+-doped fiber laser with wavelength tuning from 568.7 to 581.9 nm[J]. Optics Letters, 44, 4423-4426(2019).

    [43] Zou J H, Li T R, Dou Y B et al. Direct generation of watt-level yellow Dy3+-doped fiber laser[J]. Photonics Research, 9, 446-451(2021).

    [44] Majewski M R, Jackson S D. Diode pumped silicate fiber for visible laser emission[EB/OL]. https://arxiv.org/abs/2110.06515

    [45] Ghisler C, Lüthy W, Weber H P et al. A Tm3+ sensitized Ho3+ silica fibre laser at 2.04 μm pumped at 809 nm[J]. Optics Communications, 109, 279-281(1994).

    [46] Wu J F, Yao Z D, Zong J et al. Single-frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber[J]. Proceedings of SPIE, 7195, 358-364(2009).

    [47] Richards B, Jha A, Tsang Y et al. Tellurite glass lasers operating close to 2 μm[J]. Laser Physics Letters, 7, 177-193(2010).

    [48] Jackson S D, Bugge F, Erbert G. Directly diode-pumped holmium fiber lasers[J]. Optics Letters, 32, 2496-2498(2007).

    [49] Jenssen H, Castleberry D, Gabbe D et al. Stimulated emission at 5445 Å in Tb3+∶YLF[J]. IEEE Journal of Quantum Electronics, 9, 665(1973).

    [50] Li W S, Wu J J, Guan X F et al. Efficient continuous-wave and short-pulse Ho3+-doped fluorozirconate glass all-fiber lasers operating in the visible spectral range[J]. Nanoscale, 10, 5272-5279(2018).

    [51] Wetenkamp L, West G F, Többen H. Optical properties of rare earth-doped ZBLAN glasses[J]. Journal of Non-Crystalline Solids, 140, 35-40(1992).

    [52] Li W S, Zahng S, Ji S H et al. High-efficiency broadband tunable green laser operation of direct diode-pumped holmium-doped fiber[J]. Optics Express, 29, 15564-15575(2021).

    [53] Ji S H, Song Y Y, Wang Z Y et al. High power downconversion deep-red emission from Ho3+-doped fiber lasers[J]. Nanophotonics, 11, 1603-1609(2022).

    [54] Shute R D. Electrodeless ultraviolet communications system[J]. IEEE Aerospace and Electronic Systems Magazine, 10, 2-7(1995).

    [55] Tognoni E, Palleschi V, Corsi M et al. Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 57, 1115-1130(2002).

    [56] Shi J H, Wong T T W, He Y et al. High-resolution high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy[J]. Nature Photonics, 13, 609-615(2019).

    [57] Lancry M, Poumellec B. UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials[J]. Physics Reports, 523, 207-229(2013).

    [58] Boulnois J L. Photophysical processes in recent medical laser developments: a review[J]. Lasers in Medical Science, 1, 47-66(1986).

    [59] Askerov D, Valiev K, Velikov L et al[M]. Pulsed lithography using ArF and KrF lasers(1990).

    [60] Zhao Y, Xiang Y, Li T T. Optical design of deep ultraviolet laser irradiation system for accelerating material aging[J]. Acta Optica Sinica, 41, 0522001(2021).

    [61] Hu J M, Zhang L, Liu H L et al. High power room temperature 1014.8 nm Yb fiber amplifier and frequency quadrupling to 253.7 nm for laser cooling of mercury atoms[J]. Optics Express, 21, 30958-30963(2013).

    [62] Fujimoto Y, Nakahara M, Binun P et al. Simple CW-UV generator by SHG technique with double-clad Pr-doped waterproof fluoro-aluminate glass fiber laser[C], 21160595(2021).

    [63] Li T R, Zou J H, Ruan Q J et al. Intracavity frequency doubling deep-ultraviolet Ho3+∶ZBLAN fiber laser with wavelength tuning from 269.5 to 275.4 nm[C], 24-26(2021).

    [64] Piramidowicz R, Klimczak M, Malinowski M. Short-wavelength emission analysis in Dy∶ZBLAN glasses[J]. Optical Materials, 30, 707-710(2008).

    [65] Kaur M, Singh A, Thakur V et al. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses[J]. Optical Materials, 53, 181-189(2016).

    Liaolin Zhang, Siyu Zhu, Jianan Huang, Jia Liu, Jianhui Huang, Weixiong You. Research Progress on Blue LD-Pumped Rare Earths Doped Visible Fiber Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516016
    Download Citation