• Matter and Radiation at Extremes
  • Vol. 9, Issue 1, 016603 (2024)
Yang Liu1,2, De-Hua Zhang1, Jing-Fei Xin1, Yudong Pu3..., Jun Li4, Tao Tao5, Dejun Sun1, Rui Yan1,6,a) and Jian Zheng5,6,7|Show fewer author(s)
Author Affiliations
  • 1Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
  • 2Deep Space Exploration Laboratory, Hefei 230026, China
  • 3Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 4Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 5Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 6Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
  • 7CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
  • show less
    DOI: 10.1063/5.0157344 Cite this Article
    Yang Liu, De-Hua Zhang, Jing-Fei Xin, Yudong Pu, Jun Li, Tao Tao, Dejun Sun, Rui Yan, Jian Zheng. Growth of ablative Rayleigh-Taylor instability induced by time-varying heat-flux perturbation[J]. Matter and Radiation at Extremes, 2024, 9(1): 016603 Copy Citation Text show less
    References

    [1] LordRayleigh. Scientific Papers II, 200(1900).

    [2] G. I.Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. London, Ser. A, 201, 192-196(1950).

    [3] A.Burrows. Supernova explosions in the universe. Nature, 403, 727-733(2000).

    [4] A. Y.Chtchelkanova, V. N.Gamezo, A. M.Khokhlov, E. S.Oran, R. O.Rosenberg. Thermonuclear supernovae: Simulations of the deflagration stage and their implications. Science, 299, 77-81(2003).

    [5] E.Hicks. Rayleigh–Taylor unstable flames—Fast or faster?. Astrophys. J., 803, 72(2015).

    [6] C. M.Huntington, C. C.Kuranz, A. R.Miles, H.-S.Park, T.Plewa, B. A.Remington, H.Robey, A.Shimony, D.Shvarts, M.Tranthamet?al.. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants. Nat. Commun., 9, 1564(2018).

    [7] E. L.Blanton, T.Clarke, B. R.McNamara, S. W.Randall, C. L.Sarazin. Active galactic nucleus feedback in clusters of galaxies. Proc. Natl. Acad. Sci. U. S. A., 107, 7174-7178(2010).

    [8] K. S.Anderson, T. R.Boehly, R. S.Craxton, V. N.Goncharov, D. R.Harding, J. P.Knauer, R. L.McCrory, P. W.McKenty, D. D.Meyerhofer, J. F.Myattet?al.. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [9] K. L.Baker, D. A.Callahan, D. T.Casey, O. A.Hurricane, A. L.Kritcher, J. E.Ralph, H. F.Robey, J. S.Ross, C. V.Young, A. B.Zylstra et al. Burning plasma achieved in inertial fusion. Nature, 601, 542-548(2022).

    [10] H.Abu-Shawareb, R.Acree, J.Adams, P.Adams, B.Addis, R.Aden, P.Adrian, B.Afeyan, M.Aggleton, L.Aghaianet?al.. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett., 129, 075001(2022).

    [11] J.Lindl. Inertial Fusion Energy(1998).

    [12] S. E.Bodner, J. H.Gardner. Wavelength scaling for reactor-size laser-fusion targets. Phys. Rev. Lett., 47, 1137(1981).

    [13] D.Layzer. On the instability of superposed fluids in a gravitational field. Astrophys. J., 122, 1(1955).

    [14] V. N.Goncharov. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett., 88, 134502(2002).

    [15] K.Mima, L.Montierth, R. L.Morse, H.Takabe. Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 28, 3676-3682(1985).

    [16] S. E.Bodner. Rayleigh-Taylor instability and laser-pellet fusion. Phys. Rev. Lett., 33, 761-764(1974).

    [17] R.Betti, V. N.Goncharov, R. L.McCrory, C. P.Verdon. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas, 5, 1446(1998).

    [18] J. D.Lindl, D. H.Munro, M.Tabak. Hydrodynamic stability and the direct drive approach to laser fusion. Phys. Fluids B, 2, 1007-1014(1990).

    [19] S. G.Glendinning, S. W.Haan, B. A.Hammel, J. D.Kilkenny, J. P.Knauer, J. D.Lindl, D.Munro, B. A.Remington, C. P.Verdon, S. V.Weber. A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas, 1, 1379-1389(1994).

    [20] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933-4024(1995).

    [21] S. N.Dixit, S. G.Glendinning, B. A.Hammel, D. H.Kalantar, M. H.Key, J. D.Kilkenny, J. P.Knauer, D. M.Pennington, B. A.Remington, R. J.Wallace, S. V.Weber. Measurement of a dispersion curve for linear-regime Rayleigh-Taylor growth rates in laser-driven planar targets. Phys. Rev. Lett., 78, 3318-3321(1997).

    [22] J.Sanz. Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion. Phys. Rev. Lett., 73, 2700(1994).

    [23] R.Betti, V. N.Goncharov, R. L.McCrory, C. P.Verdon. Self-consistent cutoff wave number of the ablative Rayleigh–Taylor instability. Phys. Plasmas, 2, 3844-3851(1995).

    [24] R.Betti, V. N.Goncharov, R. L.McCrory, P.Sorotokin, C. P.Verdon. Self-consistent stability analysis of ablation fronts with large Froude numbers. Phys. Plasmas, 3, 1402-1414(1996).

    [25] R.Betti, V. N.Goncharov, R. L.McCrory, C. P.Verdon. Self-consistent stability analysis of ablation fronts with small Froude numbers. Phys. Plasmas, 3, 4665-4676(1996).

    [26] R.Betti, V. N.Goncharov, R. L.McCrory, P.Sorotokin, C. P.Verdon. Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas, 3, 2122-2128(1996).

    [27] L. F.Ibanez, A. R.Piriz, J.Sanz. Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited. Phys. Plasmas, 4, 1117-1126(1997).

    [28] C. A.Di Stefano, F. W.Doss, R. P.Drake, K. A.Flippo, C. M.Huntington, D. H.Kalantar, C. C.Kuranz, A.Shimony, D.Shvarts, M.Tranthamet?al.. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock. Phys. Plasmas, 25, 052118(2018).

    [29] R.Betti, J.Sanz. Bubble acceleration in the ablative Rayleigh-Taylor instability. Phys. Rev. Lett., 97, 205002(2006).

    [30] H.Aluie, R.Betti, A.Frank, B.Liu, J.Sanz, R.Yan. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability. Phys. Plasmas, 23, 022701(2016).

    [31] J. Q.Dong, Z. H.Fang, S. Z.Fu, X. G.Huang, G.Jia, L. F.Wang, J. F.Wu, Z. Y.Xie, W. H.Ye, S. Y.Zouet?al.. Nonlinear ablative Rayleigh–Taylor growth experiments on Shenguang–II. Phys. Plasmas, 27, 072703(2020).

    [32] U.Alon, L.Arazi, D.Kartoon, D.Oron, A.Rikanati, D.Shvarts. Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas, 8, 2883-2889(2001).

    [33] A.Casner, S.Felker, L.Jacquet, S.Liberatore, P.Loiseau, D.Martinez, L.Masse, P. E.Masson-Laborde, A. S.Moore, R.Seugling et al. Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the national ignition facility. Phys. Plasmas, 22, 056302(2015).

    [34] A.Casner, J. O.Kane, S.Liberatore, D. A.Martinez, L. P.Masse, V. A.Smalyuk. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF. Phys. Rev. Lett., 114, 215004(2015).

    [35] B.Albertazzi, A.Casner, S. F.Khan, C.Mailliet, D.Martinez, T.Michel, G.Rigon, Y.Sakawa, T.Sano, P.Tzeferacoset?al.. From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes. Nucl. Fusion, 59, 032002(2018).

    [36] B.Albertazzi, A.Casner, A.Faenov, P.Mabey, T.Michel, N.Ozaki, T.Pikuz, G.Rigon, Y.Sakawa, T.Sanoet?al.. Turbulent hydrodynamics experiments in high energy density plasmas: Scientific case and preliminary results of the turboHEDP project. High Power Laser Sci. Eng., 6, e44(2018).

    [37] H.Aluie, R.Betti, D.Shvarts, R.Yan, H.Zhang, D.Zhao. Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions. Phys. Rev. Lett., 121, 185002(2018).

    [38] H.Aluie, R.Betti, R.Yan, H.Zhang. Nonlinear bubble competition of the multimode ablative Rayleigh–Taylor instability and applications to inertial confinement fusion. Phys. Plasmas, 27, 122701(2020).

    [39] R.Betti, A.Bose, E. M.Campbell, A.Casner, L.Ceurvorst, V.Gopalaswamy, S. X.Hu, M.Karasik, C. A.McCoy, S. P.Reganet?al.. Hybrid target design for imprint mitigation in direct-drive inertial confinement fusion. Phys. Rev. E, 101, 063207(2020).

    [40] Y.Aglitskiy, M.Karasik, S. P.Obenschain, J.Oh, A. J.Schmitt, C.Stoeckl. Order-of-magnitude laser imprint reduction using pre-expanded high-Z coatings on targets driven by a third harmonic Nd:glass laser. Phys. Plasmas, 28, 032710(2021).

    [41] J. J.Armstrong, T. J.Kessler, Y.Lin, B.Velazquez. Phase conversion of lasers with low-loss distributed phase plates. Laser Coherence Control: Technology and Applications, 1870, 95-104(1993).

    [42] T. J.Kessler, G. N.Lawrence, Y.Lin. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance. Opt. Lett., 21, 1703-1705(1996).

    [43] T.Jitsuno, T.Kanabe, N.Miyanaga, S.Nakai, M.Nakatsuda, K.Tsubakimoto. Suppression of speckle contrast by using polarization property on second harmonic generation. Opt. Commun., 103, 185-188(1993).

    [44] E.Epperlein(1990).

    [45] R. S.Craxton, T.Kessler, S.Letzring, R. W.Short, S.Skupsky, J. M.Soures. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys., 66, 3456-3462(1989).

    [46] R. S.Craxton, S.Skupsky. Irradiation uniformity for high-compression laser-fusion experiments. Phys. Plasmas, 6, 2157-2163(1999).

    [47] J. E.Rothenberg. Comparison of beam-smoothing methods for direct-drive inertial confinement fusion. J. Opt. Soc. Am. B, 14, 1664-1671(1997).

    [48] M. J.Bonino, D.Canning, T. J. B.Collins, C.Dorrer, G.Fiksel, M.Hohenberger, T. J.Kessler, B. E.Kruschwitz, J. A.Marozas, A.Shvydky et al. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion. Phys. Plasmas, 23, 092702(2016).

    [49] D.Hu, H.Jia, J.Su, X.Tian, H.Yuan, R.Zhang, W.Zheng, N.Zhu, Q.Zhu. Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing. Opt. Lasers Eng., 85, 38-47(2016).

    [50] R.H?rm, L. Spitzer. Transport phenomena in a completely ionized gas. Phys. Rev., 89, 977(1953).

    [51] G.Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5, 506-517(1968).

    [52] J. J.Duderstadt, G. A.Moses. Inertial Confinement Fusion(1982).

    [53] B.Fryxell, D. Q.Lamb, P.MacNeice, K.Olson, P.Ricker, R.Rosner, F. X.Timmes, J. W.Truran, H.Tufo, M.Zingale. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser., 131, 273(2000).

    [54] G.-S.Jiang, C.-W.Shu. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126, 202-228(1996).

    [55] H.Aluie, R.Betti, D.-J.Sun, Z.-H.Wan, J.Xin, R.Yan, H.Zhang, J.Zheng. Two mode coupling of the ablative Rayleigh-Taylor instabilities. Phys. Plasmas, 26, 032703(2019).

    [56] H.Aluie, R.Betti, V.Gopalaswamy, R.Yan, H.Zhang. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers. Phys. Rev. E, 97, 011203(2018).

    [57] H. B.Cai, J. Y.Fu, H. S.Zhang, S. P.Zhu. Self-similar bubble-front evolutions of ablative Rayleigh–Taylor instability seeded by localized perturbations. Phys. Plasmas, 30, 022701(2023).

    [58] J.Li, X.Lu, R.Yan, H.Zhang, B.Zhao, J.Zheng. Mitigation of the ablative Rayleigh–Taylor instability by nonlocal electron heat transport. Matter Radiat. Extremes, 7, 055902(2022).

    [59] J.Li, Z.Wan, J.Xin, R.Yan, D.Zhang, H.Zhang, J.Zheng. Self-generated magnetic field in ablative Rayleigh–Taylor instability. Phys. Plasmas, 29, 072702(2022).

    [60] R.Betti, V. N.Goncharov, R. L.McCrory, P. W.McKenty, S.Skupsky, R. P. J.Town. Analysis of a direct-drive ignition capsule designed for the national ignition facility. Phys. Plasmas, 8, 2315-2322(2001).

    [61] E. M.Campbell, W. J.Hogan. The National Ignition Facility - applications for inertial fusion energy and high-energy-density science. Plasma Phys. Controlled Fusion, 41, B39(1999).

    [62] D. K.Bradley, J. A.Delettrez, C. P.Verdon. Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions. Phys. Rev. Lett., 68, 2774-2777(1992).

    Yang Liu, De-Hua Zhang, Jing-Fei Xin, Yudong Pu, Jun Li, Tao Tao, Dejun Sun, Rui Yan, Jian Zheng. Growth of ablative Rayleigh-Taylor instability induced by time-varying heat-flux perturbation[J]. Matter and Radiation at Extremes, 2024, 9(1): 016603
    Download Citation