• Laser & Optoelectronics Progress
  • Vol. 59, Issue 10, 1010003 (2022)
Shengjun Xu1、2, Ming Hao1、*, Yuebo Meng1、2, Guanghui Liu1, and Jiuqiang Han1、2
Author Affiliations
  • 1School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi , China
  • 2Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510320, Guangdong , China
  • show less
    DOI: 10.3788/LOP202259.1010003 Cite this Article Set citation alerts
    Shengjun Xu, Ming Hao, Yuebo Meng, Guanghui Liu, Jiuqiang Han. Crack Detection Method of Holistically-Nested Network Based on Feature Enhancement[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1010003 Copy Citation Text show less
    HEDNet. (a) Structure of HEDNet; (b) structure of deep supervision module
    Fig. 1. HEDNet. (a) Structure of HEDNet; (b) structure of deep supervision module
    Structure of CFEHNet model
    Fig. 2. Structure of CFEHNet model
    Convolution-deconvolution feature fusion module
    Fig. 3. Convolution-deconvolution feature fusion module
    Structure of boundary refinement module
    Fig. 4. Structure of boundary refinement module
    Partial dataset after data enhancement
    Fig. 5. Partial dataset after data enhancement
    Change of training loss value and verification accuracy rate
    Fig. 6. Change of training loss value and verification accuracy rate
    Visual comparison between VGG16 and feature fusion module
    Fig. 7. Visual comparison between VGG16 and feature fusion module
    Visual comparison of effectiveness of deep supervision module
    Fig. 8. Visual comparison of effectiveness of deep supervision module
    Comparison of partial test results of Bridge_Crack_Image_Data
    Fig. 9. Comparison of partial test results of Bridge_Crack_Image_Data
    Comparison of partial test results of CFD
    Fig. 10. Comparison of partial test results of CFD
    Deconvolution stageConvolutionChannelPoolOutput
    conv_5_3512Max,2×22M×2M
    Fuse with conv_4_31×15122M×2M
    D4(4_1,4_2,4_3)3×3256Max,2×24M×4M
    Fuse with conv_3_31×12564M×4M
    D3(3_1,3_2,3_3)3×3128Max,2×28M×8M
    Fuse with conv_2_21×11288M×8M
    D2(2_1,2_2)3×364Max,2×216M×16M
    Fuse with conv_1_21×16416M×16M
    D1(1_1,1_2)3×36416M×16M
    Table 1. Deconvolution network structure and feature fusion parameters
    SamplePredicted positive sample (positive)Prediction negative sample (negative)
    Actually positive sample (positive)TPFN
    Actually negative sample (negative)FPTN
    Table 2. Confusion matrix
    ConditionBridge_Crack_Image_DataCrack Forest Dataset
    PrecisionRecallF1PrecisionRecallF1
    CFEHNet without stage 10.85340.69070.76340.86150.86480.8631
    CFEHNet without stage 20.87560.69130.77260.88050.88450.8825
    CFEHNet without stage 30.89420.69450.78170.90580.90560.9057
    CFEHNet without stage 40.91340.70110.79320.91040.90130.9060
    CFEHNet0.91560.70630.79740.91070.90220.9064
    Table 3. Contribution of side network output to result in each stage
    ModelBoundary accuracyCenter accuracyOverall accuracy
    CFEHNet without BR0.71380.94120.9167
    CFEHNet0.73310.94140.9214
    Table 4. Comparison experiment of boundary thinning module
    AlgorithmPrecisionRecallF1
    HED210.91670.65030.7608
    UNet230.89450.68220.7740
    SegNet240.87450.68870.7705
    CFEHNet without BR0.91560.70630.7974
    CFEHNet0.92140.71010.8021
    Table 5. Comparison of quantitative analysis of Bridge_Crack_Image_Data
    AlgorithmPrecisionRecallF1-score
    HED210.86560.86990.8677
    UNet230.88110.88970.8854
    SegNet240.88160.87890.8802
    CFEHNet without BR0.91070.90220.9064
    CFEHNet0.91640.90620.9113
    Table 6. Comparison of quantitative analysis of CFD
    Shengjun Xu, Ming Hao, Yuebo Meng, Guanghui Liu, Jiuqiang Han. Crack Detection Method of Holistically-Nested Network Based on Feature Enhancement[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1010003
    Download Citation