• Infrared and Laser Engineering
  • Vol. 51, Issue 4, 20210337 (2022)
Jianlin Li1, Zhuolin Liu2, Xiaoyan Chen1, Yongchang Lei1, Wei Dong1, and Kunlun Qian1
Author Affiliations
  • 1Kunming Institute of Physics, Kunming 650223, China
  • 2Mililary Representation Office of Equipment Department of China PLA Air Force in Kunming Area, Kunming 650223, China
  • show less
    DOI: 10.3788/IRLA20210337 Cite this Article
    Jianlin Li, Zhuolin Liu, Xiaoyan Chen, Yongchang Lei, Wei Dong, Kunlun Qian. Thermal damage of infrared focal plane detector Dewar and its environmental test[J]. Infrared and Laser Engineering, 2022, 51(4): 20210337 Copy Citation Text show less
    Infrared detector
    Fig. 1. Infrared detector
    Structure and technology of infrared focal plane detector Dewar assembly
    Fig. 2. Structure and technology of infrared focal plane detector Dewar assembly
    Time constant and temperature response curve
    Fig. 3. Time constant and temperature response curve
    Mini Dewar temperature response curve
    Fig. 4. Mini Dewar temperature response curve
    Screening strength curve
    Fig. 5. Screening strength curve
    PartPhaseFailure modeAcceleration factor
    IDDCACoolerStorageLeakageHot temperature
    Temperature cycles
    QutgassingHot temperature
    OperationalBearings and moving parts wear or breakFPA temperature
    High ambient temperature
    Dewar heat load
    DDAVacuumStorageLeakageTemperature cycles
    Hot temperature
    OperationalQutgassingTemperature cycles
    Hot temperature
    ConnectionsStorageBondings agingHot temperature
    OperationalBondings breakTemperature cycles
    FPAStorageDiodes degradations (increase of defective pixels)Hot temperature
    OperationalLoss of connections (increase of defective pixels)Number of cooldown cycles
    Table 1. Main failure modes of thermorunaway of infrared detectors[8]
    CategoryTest procedureStandardTemperature extremesTest durationTransfer time
    Storage testHigh temperatures or low temperatures Constant temperature storage GJB 1788—1993+40-+70 ℃ 0-−62 ℃ 24-168 h 24-120 h
    GJB 2345—1995+70 ℃ −60 ℃ 72 h 72 h
    MIL−D−49172A+71 ℃,−54 ℃
    SOFRADIR+71 ℃ −54 ℃ 1500 h 6 months
    GJB 5244—2004 GJB 7247—2011 GJB 5029A—2015 GJB 6791—2009 GJB 150.3—1986 +70 ℃ −55 ℃ 48 h 24 h
    GJB 150.3A—2009+71 ℃,−54 ℃≤3 ℃/min
    Temperature shock test High temperatures or low temperatures. Constant temperature shock GJB 1788—1993+40-+85 ℃ −10-−62 ℃ 0.5 h 1.2 h <5 min,3 or 5 cycles
    GJB 2345—1995+70 ℃,−55 ℃12 h<5 min,3 cycles
    MIL-D-49172A SOFRADIR +71 ℃,−54 ℃
    GJB 5244—2004 GJB 7247—2011 +70 ℃,−55 ℃<5 min,5 cycles
    GJB 150.5—1986 MIL-STD-810C +70 ℃,−55 ℃1 h5 min,3 cycles
    GJB 150.5A—2009 MIL-STD-810F +71 ℃,−54 ℃1 min,≥3 cycles
    Table 2. Procedure of infrared detector temperature environment test
    Temperature extremes/℃Test durationTransfer time
    Environmental testsTemperature storage+7172 h
    −5472 h
    Temperature shock+711 h1 min, ≥5 cycles
    −541 h
    Reliability testsTemperature cycles+711 h≥10 ℃/min, 12 cycles
    −541 h
    +7130 min≥30 ℃/min, 50 or 100 cycles
    −19330 min
    Temperature storage+711500 h
    −546 months
    Accelerated degradation test[13]+902160 h
    Table 3. Test magnitude and duration of the trouble-free temperature environmental test
    Jianlin Li, Zhuolin Liu, Xiaoyan Chen, Yongchang Lei, Wei Dong, Kunlun Qian. Thermal damage of infrared focal plane detector Dewar and its environmental test[J]. Infrared and Laser Engineering, 2022, 51(4): 20210337
    Download Citation