• Photonics Research
  • Vol. 12, Issue 9, 1972 (2024)
Tiantian Shi1,2,3, Qiang Wei4, Xiaomin Qin3, Zhenfeng Liu3..., Kunkun Chen3, Shiying Cao5, Hangbo Shi3, Zijie Liu3 and Jingbiao Chen3,6,*|Show fewer author(s)
Author Affiliations
  • 1School of Integrated Circuits, Peking University, Beijing 100871, China
  • 2National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing 100871, China
  • 3State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute of Quantum Electronics, School of Electronics, Peking University, Beijing 100871, China
  • 4Chengdu Spaceon Electronics Co., Ltd., Chengdu 611731, China
  • 5National Institute of Metrology, Beijing 100029, China
  • 6Hefei National Laboratory, Hefei 230088, China
  • show less
    DOI: 10.1364/PRJ.528942 Cite this Article Set citation alerts
    Tiantian Shi, Qiang Wei, Xiaomin Qin, Zhenfeng Liu, Kunkun Chen, Shiying Cao, Hangbo Shi, Zijie Liu, Jingbiao Chen, "Dual-frequency optical-microwave atomic clocks based on cesium atoms," Photonics Res. 12, 1972 (2024) Copy Citation Text show less
    References

    [1] T. Bothwel, C. J. Kennedy, A. Aeppli. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature, 602, 420-424(2022).

    [2] E. Oelker, R. B. Hutson, C. J. Kennedy. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics, 13, 714-719(2019).

    [3] W. F. McGrew, X. Zhang, R. J. Fasano. Atomic clock performance enabling geodesy below the centimetre level. Nature, 564, 87-90(2018).

    [4] S. M. Brewer, J.-S. Chen, A. M. Hankin. Quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett., 123, 033201(2019).

    [5] Boulder Atomic. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature, 591, 564-569(2021).

    [6] J. Grotti, S. Koller, S. Vogt. Geodesy and metrology with a transportable optical clock. Nat. Phys., 14, 437-441(2018).

    [7] B. M. Roberts, P. Delva, A. Al-Masoudi. Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks. New J. Phys., 22, 093010(2020).

    [8] G. Barontini, L. Blackburn, F. B.-M. V. Boyer. Measuring the stability of fundamental constants with a network of clocks. EPJ Quantum Technol., 9, 12(2022).

    [9] F. Riehle, P. Gill, F. Arias. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia, 55, 188(2018).

    [10] M. G. Kozlov, M. S. Safronova, J. R. Crespo López-Urrutia. Highly charged ions: optical clocks and applications in fundamental physics. Rev. Mod. Phys., 90, 045005(2018).

    [11] C. W. Chou, C. Kurz, D. B. Hume. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature, 545, 203-207(2017).

    [12] K. H. Leung, B. Iritani, E. Tiberi. Terahertz vibrational molecular clock with systematic uncertainty at the 10−14 level. Phys. Rev. X, 13, 011047(2023).

    [13] A. Kawasaki. Magic wavelength for the hydrogen 1S–2S transition. Phys. Rev. A, 92, 042507(2015).

    [14] E. A. Burt, J. D. Prestage, R. L. Tjoelker. Demonstration of a trapped-ion atomic clock in space. Nature, 595, 43-47(2021).

    [15] S. Kraemer, J. Moens, M. Athanasakis-Kaklamanakis. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature, 617, 706-710(2023).

    [16] J. Taylor. Millisecond pulsars: nature’s most stable clocks. Proc. IEEE, 79, 1054-1062(1991).

    [17] F. Riehle. Towards a redefinition of the second based on optical atomic clocks. C. R. Physique, 16, 506-515(2015).

    [18] N. Dimarcq, M. Gertsvolf, G. Mileti. Roadmap towards the redefinition of the second. Metrologiae, 61, 012001(2024).

    [19] . General conference on weights and measures 27, resolution 5, 2022.

    [20] L. Young, W. T. Hill, S. J. Sibener. Precision lifetime measurements of Cs 6p 2P1/2 and 6p 2P3/2 levels by single-photon counting. Phys. Rev. A, 50, 2174-2181(1994).

    [21] R. J. Rafac, C. E. Tanner, A. E. Livingston. Fast-beam laser lifetime measurements of the cesium 6p2P1/2,3/2 states. Phys. Rev. A, 60, 3648-3662(1999).

    [22] J. M. Amini, H. Gould. High precision measurement of the static dipole polarizability of cesium. Phys. Rev. Lett., 91, 153001(2003).

    [23] H.-R. Noh, S. E. Park, L. Z. Li. Modulation transfer spectroscopy for 87Rb atoms: theory and experiment. Opt. Express, 19, 23444-23452(2011).

    [24] T. Schuldt, K. Döringshoff, E. V. Kovalchuk. Development of a compact optical absolute frequency reference for space with 10−15 instability. Appl. Opt., 56, 1101-1106(2017).

    [25] H. Shang, T. Zhang, J. Miao. Laser with 10−13 short-term instability for compact optically pumped cesium beam atomic clock. Opt. Express, 28, 6868-6880(2020).

    [26] Y. Tanabe, Y. Sakamoto, T. Kohno. Frequency references based on molecular iodine for the study of Yb atoms using the 1S03P1 intercombination transition at 556 nm. Opt. Express, 30, 46487-46500(2022).

    [27] J. Miao, T. Shi, J. Zhang. Compact 459 nm Cs cell optical frequency standard with 2.1×1013/τ short-term stability. Phys. Rev. Appl., 18, 024034(2022).

    [28] S. Lee, G. Moon, S. E. Park. Laser frequency stabilization in the 10−14 range via optimized modulation transfer spectroscopy on the 87Rb D2 line. Opt. Lett., 48, 1020-1023(2023).

    [29] J. H. Shirley. Modulation transfer processes in optical heterodyne saturation spectroscopy. Opt. Lett., 7, 537-539(1982).

    [30] H. Shi, P. Chang, Z. Wang. Frequency stabilization of a cesium faraday laser with a double-layer vapor cell as frequency reference. IEEE Photonics J., 14, 1561006(2022).

    [31] D. A. Steck. Cesium D line data.

    [32] W. Zhang, M. J. Martin, C. Benko. Reduction of residual amplitude modulation to 1 × 10−16 for frequency modulation and laser stabilization. Opt. Lett., 39, 1980-1983(2014).

    [33] E. Zang, J. Cao, Y. Li. Realization of four-pass I2 absorption cell in 532 nm optical frequency standard. IEEE Trans. Instrum. Meas., 56, 673-676(2007).

    [34] P. Marin-Palomo, J. N. Kemal, M. Karpov. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [35] A. Fülöp, M. Mazur, A. Lorences-Riesgo. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018).

    [36] F. Riehle. Frequency Standards: Basic and Applications, 294-298(2004).

    [37] W. Xie, Q. Wang, X. He. Frequency instability of a miniature optically pumped cesium-beam atomic frequency standard. Rev. Sci. Instrum., 91, 074705(2020).

    [38] J.-L. Picqué. Hyperfine optical pumping of a cesium atomic beam, and applications. Metrologia, 13, 115-119(1977).

    [39] N. Dimarcq, V. Giordano, P. Cerez. Analysis of the noise sources in an optically pumped cesium beam resonator. IEEE Trans. Instrum. Meas., 42, 115-120(1993).

    [40] G. Lucas-Leclin, P. Cérez, N. Dimarcq. Laser-induced noise contribution due to imperfect atomic state preparation in an optically pumped caesium beam resonator. J. Phys. B, 32, 327(1999).

    [41] G. Avila, E. D. Clercq, M. D. Labachellerie. Microwave Ramsey resonances from a laser diode optically pumped cesium beam resonator. IEEE Trans. Instrum. Meas., IM-34, 139-143(1985).

    [42] K. W. Martin, G. Phelps, N. D. Lemke. Compact optical atomic clock based on a two-photon transition in rubidium. Phys. Rev. Appl., 9, 014019(2018).

    [43] Z. Zhang, Z. Wang, H. Liu. An ultra-stable laser based on molecular iodine with a short-term instability of 3.3 × 10−15 for space based gravity missions. Class. Quantum Grav., 40, 225001(2023).

    [44] J. D. Roslund, A. Cingöz, W. D. Lunden. Optical clocks at sea. Nature, 628, 736-740(2024).

    Tiantian Shi, Qiang Wei, Xiaomin Qin, Zhenfeng Liu, Kunkun Chen, Shiying Cao, Hangbo Shi, Zijie Liu, Jingbiao Chen, "Dual-frequency optical-microwave atomic clocks based on cesium atoms," Photonics Res. 12, 1972 (2024)
    Download Citation