• Chinese Optics Letters
  • Vol. 22, Issue 12, 121103 (2024)
Xuanpengfan Zou1,2,3, Xianwei Huang1, Wei Tan1, Liyu Zhou1..., Xiaohui Zhu1, Qin Fu1, Xiaoqian Liang1, Suqin Nan4, Yanfeng Bai1,* and Xiquan Fu1,**|Show fewer author(s)
Author Affiliations
  • 1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
  • 2Hunan Police Academy, Changsha 410138, China
  • 3Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan Police Academy, Changsha 410138, China
  • 4School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China
  • show less
    DOI: 10.3788/COL202422.121103 Cite this Article Set citation alerts
    Xuanpengfan Zou, Xianwei Huang, Wei Tan, Liyu Zhou, Xiaohui Zhu, Qin Fu, Xiaoqian Liang, Suqin Nan, Yanfeng Bai, Xiquan Fu, "Target extraction through strong scattering disturbance using characteristic-enhanced pseudo-thermal ghost imaging," Chin. Opt. Lett. 22, 121103 (2024) Copy Citation Text show less
    References

    [1] M. B. Garcia, S. P. Gutiérrez, A. V. Martí. Polarimetric imaging vs. conventional imaging: evaluation of image contrast in fog. Atmosphere, 12, 813(2021).

    [2] F. Huang, S. Qiu, H. Liu. Active imaging through dense fog by utilizing the joint polarization defogging and denoising optimization based on range-gated detection. Opt. Express, 31, 25527(2023).

    [3] J. C. H. Camp, Y. J. Lee, J. M. Heddleston. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics, 8, 627(2014).

    [4] Y. Chen, S. Wang, F. Zhang. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng., 1, 60(2023).

    [5] Z. Jia, J. Li, L. Gao. Dynamic light scattering: a powerful tool for in situ nanoparticle sizing. Colloid Interfaces, 7, 15(2023).

    [6] H. B. Sedeh, D. G. Pires, N. Chandra. Manipulation of scattering spectra with topology of light and matter. Laser Photonics Rev., 17, 2200472(2023).

    [7] K. Vynck, R. Pierrat, R. Carminati. Light in correlated disordered media. Rev. Mod. Phys., 95, 045003(2023).

    [8] A. Sdobnov, G. Piavchenko, A. Bykov. Advances in dynamic light scattering imaging of blood flow. Laser Photonics Rev., 18, 2300494(2023).

    [9] K. Ma, X. Wang, S. He. Plug-and-play algorithm for imaging through scattering media under ambient light interference. Opt. Lett., 48, 1754(2023).

    [10] Y. Shui, J. Zhou, X. Luo. Imaging through scattering media under strong ambient light interference via the lock-in process. Opt. Express, 31, 29782(2023).

    [11] S. Akther, M. B. Mikkelsen, D. D. Postnov. Choosing a polarisation configuration for dynamic light scattering and laser speckle contrast imaging. Biomed. Opt. Express, 15, 336(2024).

    [12] T. B. Pittman, Y. H. Shih, D. V. Strekalov et al. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429(1995).

    [13] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko et al. Observation of two-photon ‘ghost’ interference and diffraction. Phys. Rev. Lett., 74, 3600(1995).

    [14] T. B. Pittman, D. V. Strekalov, D. N. Klyshko et al. Two-photon geometric optics. Phys. Rev. A, 53, 2804(1996).

    [15] G. D. Giuseppe, L. Haiberger, F. D. Martini. Quantum interference and indistinguishability with femtosecond pulses. Phys. Rev. A, 56, R21(1997).

    [16] B. E. A. Saleh, A. Joobeur, M. C. Teich. Spatial effects in two- and four-beam interference of partially entangled biphotons. Phys. Rev. A, 57, 3991(1998).

    [17] A. Gatti, R. E. Brambilla, M. Bache et al. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett., 93, 093602(2004).

    [18] J. Cheng, S. S. Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett., 92, 093903(2004).

    [19] W. L. Gong. High-resolution pseudo-inverse ghost imaging. Photonics Res., 3, 234(2015).

    [20] S. Q. Nan, Y. F. Bai, X. H. Shi et al. Experimental investigation of ghost imaging of reflective objects with different surface roughness. Photonics Res., 5, 372(2017).

    [21] H. C. Liu, H. Yang, J. Xiong et al. Positive and negative ghost imaging. Phys. Rev. Appl., 12, 034019(2019).

    [22] Z. Yang, L. Zhao, X. Zhao. Lensless ghost imaging through the strongly scattering medium. Chin. Phys. B, 25, 024202(2015).

    [23] Q. Fu, Y. F. Bai, X. W. Huang et al. Positive influence of the scattering medium on reflective ghost imaging. Photonics Res., 7, 1468(2019).

    [24] F. Li, M. Zhao, Z. Tian. Compressive ghost imaging through scattering media with deep learning. Opt. Express, 28, 17395(2020).

    [25] Z. Gao, J. Yin, Y. Bai. Imaging quality improvement of ghost imaging in scattering medium based on Hadamard modulated light field. Appl. Opt., 59, 8472(2020).

    [26] Z. Gao, X. Cheng, K. Chen. Computational ghost imaging in scattering media using simulation-based deep learning. IEEE Photonics J., 12, 6803115(2020).

    [27] Y. Xiao, L. Zhou, W. Chen. High-resolution ghost imaging through complex scattering media via a temporal correction. Opt. Lett., 47, 3692(2022).

    [28] Y. Peng, W. Chen. Learning-based correction with Gaussian constraints for ghost imaging through dynamic scattering media. Opt. Lett., 48, 4480(2023).

    [29] K. X. Guo, Y. F. Bai, X. Q. Fu. Ghost imaging of the low or high frequency based on the corresponding spatial-frequency of the reference pattern. Opt. Commun., 444, 120(2019).

    [30] X. Nie, H. Song, W. Ren et al. Deep-learned speckle pattern and its application to ghost imaging(2021).

    [31] S. Sun, W. T. Liu, J. H. Gu. Ghost imaging normalized by second-order coherence. Opt. Lett., 44, 5993(2019).

    [32] J. Long, E. Shelhamer, T. Darrell. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431(2015).

    [33] O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention, 234(2015).

    [34] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436(2015).

    [35] M. T. McCann, K. H. Jin, M. Unser. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Proc. Mag., 34, 85(2017).

    [36] B. George, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921(2019).

    [37] X. Huang, S. Nan, W. Tan et al. Ghost imaging for detecting trembling with random temporal changing. Opt. Lett., 45, 1354(2020).

    [38] T. Bian, Y. Yi, J. Hu. A residual-based deep learning approach for ghost imaging. Sci. Rep., 10, 12149(2020).

    [39] H. Wu, R. Wang, G. Zhao. Deep-learning denoising computational ghost imaging. Opt. Laser Eng., 134, 106183(2020).

    [40] X. Yang, Z. Yu, L. Xu. Underwater ghost imaging based on generative adversarial networks with high imaging quality. Opt. Express, 29, 28388(2020).

    Xuanpengfan Zou, Xianwei Huang, Wei Tan, Liyu Zhou, Xiaohui Zhu, Qin Fu, Xiaoqian Liang, Suqin Nan, Yanfeng Bai, Xiquan Fu, "Target extraction through strong scattering disturbance using characteristic-enhanced pseudo-thermal ghost imaging," Chin. Opt. Lett. 22, 121103 (2024)
    Download Citation