• Journal of Semiconductors
  • Vol. 43, Issue 6, 062301 (2022)
Xin Wei1, Weiwei Zhao1, Jintao Yang1, Yong Zhang1, Junming Song1, Zhenhua Ni1, Junpeng Lu1, and Hongwei Liu2
Author Affiliations
  • 1School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
  • 2Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
  • show less
    DOI: 10.1088/1674-4926/43/6/062301 Cite this Article
    Xin Wei, Weiwei Zhao, Jintao Yang, Yong Zhang, Junming Song, Zhenhua Ni, Junpeng Lu, Hongwei Liu. Direct writing-in and visualizing reading-out data storage with high capacity in low-cost plastics[J]. Journal of Semiconductors, 2022, 43(6): 062301 Copy Citation Text show less
    References

    [1] Q F Dai, O Y Min, W G Yuan et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory. Adv Mater, 29, 1701918(2017).

    [2] M Gu, Q Zhang, S Lamon. Nanomaterials for optical data storage. Nat Rev Mater, 1, 16070(2016).

    [3] S Lin, H Lin, C Ma et al. High-security-level multi-dimensional optical storage medium: Nanostructured glass embedded with LiGa5O8:Mn2+ with photostimulated luminescence. Light Sci Appl, 9, 22(2020).

    [4] A S van de Nes, J M Braat, S F Pereira. High-density optical data storage. Rep Prog Phys, 69, 2323(2006).

    [5] S Kawata, Y Kawata. Three-dimensional optical data storage using photochromic materials. Chem Rev, 100, 1777(2000).

    [6] B H Cumpston, S P Ananthavel, S Barlow et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 398, 51(1999).

    [7] C Corredor, Z L Huang, K Belfield. Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene. Adv Mater, 18, 2910(2006).

    [8] Y Shen, J Swiatkiewicz, D Jakubczyk et al. High-density optical data storage with one-photon and two-photon near-field fluorescence microscopy. Appl Opt, 40, 938(2001).

    [9] K D Belfield, K J Schafer. A new photosensitive polymeric material for WORM optical data storage using multichannel two-photon fluorescence readout. Chem Mater, 14, 3656(2002).

    [10] G Kämpf, D Freitag, G Fengler et al. Polymers for electrical and optical data storage. Polym Adv Technol, 3, 169(1992).

    [11] E Betzig, J K Trautman. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 257, 189(1992).

    [12] Y L Hu, D Wu, J W Li et al. Two-stage optical recording: Photoinduced birefringence and surface-mediated bits storage in bisazo-containing copolymers towards ultrahigh data memory. Opt Express, 24, 23557(2016).

    [13] X P Yuan, M Zhao, X J Guo et al. Ultra-high capacity for three-dimensional optical data storage inside transparent fluorescent tape. Opt Lett, 45, 1535(2020).

    [14] H Sano, T Shima, M Kuwahara et al. Response function of super-resolution readout of an optical disc studied by coupled electromagnetic–thermal simulation. Jpn J Appl Phys, 55, 09SB02(2016).

    [15] F X Zhai, F Y Zuo, H Huang et al. Optical switch formation in antimony super-resolution mask layers induced by picosecond laser pulses. Chin Phys Lett, 27, 014209(2010).

    [16] L P Shi, T C Chong, X S Miao et al. A new structure of super-resolution near-field phase-change optical disk with a Sb2Te3 mask layer. Jpn J Appl Phys, 40, 1649(2001).

    [17] Y Liu, Y Lu, X Yang et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature, 543, 229(2017).

    [18] P Zijlstra, J W M Chon, M Gu. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 459, 410(2009).

    [19] X Fang, H Ren, M Gu. Orbital angular momentum holography for high-security encryption. Nat Photonics, 14, 102(2020).

    [20] X Li, H Ren, X Chen et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun, 6, 6984(2015).

    [21] D Z Tan, X Y Sun, Q Wang et al. Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing. Opt Lett, 45, 3941(2020).

    [22] Z Wang, D Z Tan, J R Qiu. Single-shot photon recording for three-dimensional memory with prospects of high capacity. Opt Lett, 45, 6274(2020).

    [23] J W Chan, T R Huser, S H Risbud et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl Phys Lett, 82, 2371(2003).

    [24] X J Huang, Q Y Guo, D D Yang et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat Photonics, 14, 82(2020).

    [25] H W Lee, M A Schmidt, P Uebel et al. Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel. Opt Express, 19, 8200(2011).

    [26] K Miura, J R Qiu, S Fujiwara et al. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions. Appl Phys Lett, 80, 2263(2002).

    [27] Z G Nie, H Lee, H Yoo et al. Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate. Appl Phys Lett, 94, 111912(2009).

    [28] P S Salter, M Baum, I Alexeev et al. Exploring the depth range for three-dimensional laser machining with aberration correction. Opt Express, 22, 17644(2014).

    [29] B P Cumming, A Jesacher, M J Booth et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Opt Express, 19, 9419(2011).

    [30] Z Kuang, D Liu, W Perrie et al. Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring. Appl Surf Sci, 255, 6582(2009).

    [31] H Cheng, C Xia, S M Kuebler et al. Aberration correction for SLM-generated Bessel beams propagating through tilted interfaces. Opt Commun, 475, 126213(2020).

    [32] M Hacker, G Stobrawa, R Sauerbrey et al. Micromirror SLM for femtosecond pulse shaping in the ultraviolet. Appl Phys B, 76, 711(2003).

    [33] A M Alshehri, K L N Deepak, D T Marquez et al. Localized nanoclusters formation in PDMS upon irradiation with femtosecond laser. Opt Mater Express, 5, 858(2015).

    [34] K Shibagaki, N Takada, K Sasaki et al. Synthetic characteristics of large carbon cluster ions by laser ablation of polymers in vacuum. J Appl Phys, 93, 655(2002).

    [35] M Gu, X P Li. The Road to multi-dimensional bit-by-bit optical data storage. Opt Photonics News, 21, 28(2010).

    [36] Z C Ma, Y L Zhang, B Han et al. Femtosecond-laser direct writing of metallic micro/nanostructures: From fabrication strategies to future applications. Small Methods, 2, 1700413(2018).

    [37] K L N Deepak, R Kuladeep, S V Rao et al. Luminescent microstructures in bulk and thin films of PMMA, PDMS, PVA, and PS fabricated using femtosecond direct writing technique. Chem Phys Lett, 503, 57(2011).

    [38] X J Huang, Q Y Guo, S L Kang et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano, 14, 3150(2020).

    [39] S Kawata, H B Sun, T Tanaka et al. Finer features for functional microdevices. Nature, 412, 697(2001).

    [40] M Straub, M Gu. Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization. Opt Lett, 27, 1824(2002).

    [41] A Jurado-Navas, J M G Balsells, J F Paris et al. General analytical expressions for the bit error rate of atmospheric optical communication systems. Opt Lett, 36, 4095(2011).

    [42] I J Goldfarb, R J McHenry, E C Penski. Thermal degradation of polymers. I. Aspects of polytetrafluoroethylene degradation. J Polym Sci, 58, 1283(1962).

    Xin Wei, Weiwei Zhao, Jintao Yang, Yong Zhang, Junming Song, Zhenhua Ni, Junpeng Lu, Hongwei Liu. Direct writing-in and visualizing reading-out data storage with high capacity in low-cost plastics[J]. Journal of Semiconductors, 2022, 43(6): 062301
    Download Citation