• Opto-Electronic Advances
  • Vol. 6, Issue 9, 220154 (2023)
Maria Baeva1、2、3, Dmitry Gets2, Artem Polushkin2, Aleksandr Vorobyov1, Aleksandr Goltaev1, Vladimir Neplokh1、4, Alexey Mozharov1, Dmitry V. Krasnikov5, Albert G. Nasibulin5, Ivan Mukhin1、4、*, and Sergey Makarov2、6、**
Author Affiliations
  • 1Alferov University, Khlopina 8/3, St. Petersburg 194021, Russia
  • 2Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 197101, Russia
  • 3Institute of Automation and Control Processes (IACP), Far Eastern Branch of Russian Academy of Sciences, Ulitsa Radio 5, Vladivostok 690041, Primorsky Krai, Russia
  • 4Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
  • 5Skolkovo Institute of Science and Technology, Nobel 3, Moscow 121205, Russia
  • 6Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
  • show less
    DOI: 10.29026/oea.2023.220154 Cite this Article
    Maria Baeva, Dmitry Gets, Artem Polushkin, Aleksandr Vorobyov, Aleksandr Goltaev, Vladimir Neplokh, Alexey Mozharov, Dmitry V. Krasnikov, Albert G. Nasibulin, Ivan Mukhin, Sergey Makarov. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection[J]. Opto-Electronic Advances, 2023, 6(9): 220154 Copy Citation Text show less
    References

    [1] M Era, S Morimoto, T Tsutsui, S Saito. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett, 676-678(1994).

    [2] SA Veldhuis, PP Boix, N Yantara, MJ Li, TC Sum et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater, 6804-6834(2016).

    [3] QS Shan, JZ Song, YS Zou, JH Li, LM Xu et al. High performance metal halide perovskite light-emitting diode: from material design to device optimization. Small, 1701770(2017).

    [4] P Jia, M Lu, SQ Sun, YB Gao, R Wang et al. Recent advances in flexible perovskite light-emitting diodes. Adv Mater Interfaces, 2100441(2021).

    [5] XK Liu, WD Xu, S Bai, YZ Jin, JP Wang et al. Metal halide perovskites for light-emitting diodes. Nat Mater, 10-21(2021).

    [6] M Lu, Y Zhang, SX Wang, J Guo, WW Yu et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv Funct Mater, 1902008(2019).

    [7] ZT Li, K Cao, JS Li, Y Tang, XR Ding et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv, 200019(2021).

    [8] A Elbanna, K Chaykun, Y Lekina, YD Liu, B Febriansyah et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci, 220006(2022).

    [9] K Youssef, Y Li, S O’Keeffe, L Li, QB Pei. Fundamentals of materials selection for light-emitting electrochemical cells. Adv Funct Mater, 1909102(2020).

    [10] D Gets, M Alahbakhshi, A Mishra, R Haroldson, A Papadimitratos et al. Reconfigurable perovskite LEC: effects of ionic additives and dual function devices. Adv Opt Mater, 2001715(2021).

    [11] YC Ling, Y Tian, X Wang, JC Wang, JM Knox et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv Mater, 8983-8989(2016).

    [12] S Chang, ZL Bai, HZ Zhong. In situ fabricated perovskite nanocrystals: a revolution in optical materials. Adv Opt Mater, 1800380(2018).

    [13] TF Xu, Y Meng, MS Wang, MX Li, M Ahmadi et al. Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission. J Mater Chem C, 8287-8293(2019).

    [14] WQ Cai, ZM Chen, ZC Li, L Yan, DL Zhang et al. Polymer-assisted in situ growth of all-inorganic perovskite nanocrystal film for efficient and stable pure-red light-emitting devices. ACS Appl Mater Interfaces, 42564-42572(2018).

    [15] Velu K Sakthi, Raj J Anandha, P Sathappan, Bharathi B Suganya, Doss S Mohan et al. Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell. Mater Lett, 132-135(2019).

    [16] DH Kim, YC Kim, HJ An, JM Myoung. Enhanced brightness of red light-emitting diodes based on CsPbBrxI3-x-PEOXA composite films. J Alloys Compd, 156272(2020).

    [17] U Bansode, A Rahman, S Ogale. Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application. J Mater Chem C, 6986-6996(2019).

    [18] KH Wang, L Wang, YY Liu, YH Song, YC Yin et al. High quality CsPbI3-xBrx thin films enabled by synergetic regulation of fluorine polymers and amino acid molecules for efficient pure red light emitting diodes. Adv Opt Mater, 2001684(2021).

    [19] A Ishteev, R Haroldson, D Gets, A Tsapenko, M Alahbakhshi et al. Ambipolar perovskite light electrochemical cell for transparent display devices(2019). https://doi.org/10.48550/arXiv.1911.06875

    [20] AS Miroshnichenko, KV Deriabin, M Baeva, FM Kochetkov, V Neplokh et al. Flexible perovskite CsPbBr3 light emitting devices integrated with GaP nanowire arrays in highly transparent and durable functionalized silicones. J Phys Chem Lett, 9672-9676(2021).

    [21] M Alahbakhshi, A Mishra, R Haroldson, A Ishteev, J Moon et al. Bright and efficient perovskite light emitting electrochemical cells leveraging ionic additives(2019). https://doi.org/10.48550/arXiv.1909.03318

    [22] M Alahbakhshi, A Papadimitratos, R Haroldson, A Mishra, A Ishteev et al. Bright perovskite light-emitting electrochemical cell utilizing CNT sheets as a tunable charge injector. Proc SPIE, 114731N(2020).

    [23] A Mishra, M Alahbakhshi, R Haroldson, Q Gu, AA Zakhidov et al. Pure blue electroluminescence by differentiated ion motion in a single layer perovskite device. Adv Funct Mater, 2102006(2021).

    [24] A Mishra, M Alahbakhshi, R Haroldson, LD Bastatas, Q Gu et al. Enhanced operational stability of perovskite light-emitting electrochemical cells leveraging ionic additives. Adv Opt Mater, 2000226(2020).

    [25] CH Tien, NP Yeh, KL Lee, LC Chen. Achieving matrix quantum dot light-emitting display based on all-inorganic CsPbBr3 perovskite nanocrystal composites. IEEE Access, 128919-128924(2021).

    [26] PP Teng, S Reichert, WD Xu, SC Yang, F Fu et al. Degradation and self-repairing in perovskite light-emitting diodes. Matter, 3710-3724(2021).

    [27] AR Bowring, L Bertoluzzi, BC O’Regan, MD McGehee. Reverse bias behavior of halide perovskite solar cells. Adv Energy Mater, 1702365(2018).

    [28] M Lokanc, R Eggert, M Redlinger. The availability of indium: the present, medium term, and long term. Golden: National Renewable Energy Laboratory(2015).

    [29] JS Xie, PJ Hang, H Wang, SH Zhao, G Li et al. Perovskite bifunctional device with improved electroluminescent and photovoltaic performance through interfacial energy-band engineering. Adv Mater, 1902543(2019).

    [30] QS Shan, CT Wei, Y Jiang, JZ Song, YS Zou et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light Sci Appl, 163(2020).

    [31] DH Shin, SH Shin, SH Choi. Self-powered and flexible perovskite photodiode/solar cell bifunctional devices with MoS2 hole transport layer. Appl Surf Sci, 145880(2020).

    [32] ZD Liu, CH Duan, F Liu, CCS Chan, HP Zhu et al. Perovskite bifunctional diode with high photovoltaic and electroluminescent performance by holistic defect passivation. Small, 2105196(2022).

    [33] SZ Yang, ZL Guo, LG Gao, FY Yu, C Zhang et al. Bifunctional dye molecule in all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 10%. Sol RRL, 1900212(2019).

    [34] XL Li, KC Long, G Zhang, WT Zou, SQ Jiang et al. Lead-free perovskite-based bifunctional device for both photoelectric conversion and energy storage. ACS Appl Energy Mater, 7952-7958(2021).

    [35] AA Marunchenko, MA Baranov, EV Ushakova, DR Ryabov, AP Pushkarev et al. Single-walled carbon nanotube thin film for flexible and highly responsive perovskite photodetector. Adv Funct Mater, 2109834(2022).

    [36] E Manousakis. Optimizing the role of impact ionization in conventional insulators. Sci Rep, 20395(2019).

    [37] ZH Xu, YG Yu, IA Niaz, UM Chen, S Arya et al. Discovery of ionic impact ionization (I3) in perovskites triggered by a single photon(2019). https://doi.org/10.48550/arXiv.1906.02475

    [38] H Xu, XC Wang, Y Li, L Cai, YS Tan et al. Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display. J Phys Chem Lett, 3689-3698(2020).

    [39] NJ Zhou, Y Bekenstein, CN Eisler, DD Zhang, AM Schwartzberg et al. Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. Sci Adv, eaav8141(2019).

    [40] EM Khabushev, DV Krasnikov, OT Zaremba, AP Tsapenko, AE Goldt et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J Phys Chem Lett, 6962-6966(2019).

    [41] IV Anoshkin, AG Nasibulin, Y Tian, BL Liu, H Jiang et al. Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method. Carbon, 130-136(2014).

    [42] AP Tsapenko, AE Goldt, E Shulga, ZI Popov, KI Maslakov et al. Highly conductive and transparent films of HAuCl4-doped single-walled carbon nanotubes for flexible applications. Carbon, 448-457(2018).

    [43] A Kaskela, AG Nasibulin, MY Timmermans, B Aitchison, A Papadimitratos et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett, 4349-4355(2010).

    [44] SX Tao, I Schmidt, G Brocks, JK Jiang, I Tranca et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat Commun, 2560(2019).

    [45] MI Saidaminov, MA Haque, J Almutlaq, S Sarmah, XH Miao et al. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties, and self-powered photodetection. Adv Opt Mater, 1600704(2017).

    [46] Z Yang, A Surrente, K Galkowski, A Miyata, O Portugall et al. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett, 1621-1627(2017).

    [47] QA Akkerman, SG Motti, Kandada AR Srimath, E Mosconi, V D’innocenzo et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J Am Chem Soc, 1010-1016(2016).

    [48] YP Varshni. Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (I). Phys Status Solidi (B), 459-514(1967).

    [49] S Adachi. Properties of Group-IV, III-V and II-VI Semiconductors(2005).

    [50] C Jacoboni, C Canali, G Ottaviani, AA Quaranta. A review of some charge transport properties of silicon. Solid State Electron, 77-89(1977).

    [51] Alamo JA del, RM Swanson. Modelling of minority-carrier transport in heavily doped silicon emitters. Solid State Electron, 1127-1136(1987).

    [52] MS Tyagi, Overstraeten R Van. Minority carrier recombination in heavily-doped silicon. Solid State Electron, 577-597(1983).

    [53] J Piprek. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation(2003).

    [54] SM Sze, YM Li, KK Ng. Physics of Semiconductor Devices(2021).

    [55] L Atourki, E Vega, M Mollar, B Marí, H Kirou et al. Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3-xIx (0 ≤ x ≤ 1). J Alloys Compd, 404-409(2017).

    [56] A Mikhailova, MP Rogachev. Impact ionization and Auger recombination in InAs. Sov Phys Semicond, 866-871(1976).

    Maria Baeva, Dmitry Gets, Artem Polushkin, Aleksandr Vorobyov, Aleksandr Goltaev, Vladimir Neplokh, Alexey Mozharov, Dmitry V. Krasnikov, Albert G. Nasibulin, Ivan Mukhin, Sergey Makarov. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection[J]. Opto-Electronic Advances, 2023, 6(9): 220154
    Download Citation