• Optics and Precision Engineering
  • Vol. 31, Issue 23, 3414 (2023)
Haoxiang WANG1,2, Yan FENG1,2,*, Ruizhi PAN1,2, Hongpu ZHANG1,2..., Yilin ZHOU1,2, Genliang XIONG1,2 and Hua ZHANG1,2|Show fewer author(s)
Author Affiliations
  • 1Robotics Institute, School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai20620, China
  • 2Shanghai Collaborative Innovation Center of Intelligent Manufacturing Robot Technology for Large Components, Shanghai0160, China
  • show less
    DOI: 10.37188/OPE.20233123.3414 Cite this Article
    Haoxiang WANG, Yan FENG, Ruizhi PAN, Hongpu ZHANG, Yilin ZHOU, Genliang XIONG, Hua ZHANG. Bionic tracing of human and robotic arm based on FBG's wavelength-electric conversion[J]. Optics and Precision Engineering, 2023, 31(23): 3414 Copy Citation Text show less
    References

    [1] J PALEP. Robotic assisted minimally invasive surgery. Journal of Minimal Access Surgery, 5, 1(2009).

    [2] 胡炼, 王志敏, 汪沛, 等. 基于激光感知的农业机器人定位系统[J]. 农业工程学报, 2023, 39(5):1-7. doi: 10.11975/j.issn.1002-6819.202211144HUL, WANGZH M, WANGP, et al. Agricultural robot positioning system based on laser sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(5):1-7.(in Chinese). doi: 10.11975/j.issn.1002-6819.202211144

    [3] 李振, 赵欢, 王辉, 等. 机器人磨抛加工接触稳态自适应力跟踪研究[J]. 机械工程学报, 2022, 58(9): 200-209. doi: 10.3901/jme.2022.09.200LIZH, ZHAOH, WANGH, et al. Research on contact steady-state adaptive force tracking of robot grinding and polishing[J]. Journal of Mechanical Engineering, 2022, 58(9): 200-209.(in Chinese). doi: 10.3901/jme.2022.09.200

    [4] 王仕强, 于佩航, 喻建胜, 等. 放喷管线自动打磨爬行机器人设计与试验[J]. 机械设计与研究, 2023, 39(1): 22-25, 30.WANGSH Q, YUP H, YUJ SH, et al. Design and test of automatic grinding crawling robot for relief pipeline[J]. Machine Design & Research, 2023, 39(1): 22-25, 30.(in Chinese)

    [5] 张凯,张尚盈,陈皓晖,等.水陆两栖仿生机器人水下步态生成研究[J/OL].机械科学与技术,2023:1-6.ZHANGK,ZHANGS Y,CHENH H, et al. Research on underwater gait generation of the amphibious bionic robot[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 2023:1-6. (in Chinese)

    [6] 高勇, 陈伟海, 陆震, 等. 蟑螂机器人仿生机理及运动控制[J]. 机械工程学报, 2010, 46(13):91-99. doi: 10.3901/jme.2010.13.091GAOY, CHENW H, LUZH, et al. Bionic mechanism and locomotion control for a cockroach robot[J]. Journal of Mechanical Engineering, 2010, 46(13):91-99. (in Chinese). doi: 10.3901/jme.2010.13.091

    [7] 黄品高,黄剑平,黄博俊, 等.实现下肢假肢智能仿生控制的神经功能重建及行走意图识别方法[J].中国科学基金,2021,35(S1):227-235.HUANGP G, HUANGJ P, HUANGB J, et al. The methods of neuromuscular function reinnervation and ambulation-intention recognition of lower-limb amputees to realize the intelligent and bionic control of powered prosthetic legs[J]. Fundamental Research Science Foundation in China,2021,35(S1):227-235. (in Chinese)

    [8] 晏益朋,余城洋,熊露婧,等.一种基于离散时域模型的单相PWM整流器控制参数多目标优化设计方法[J].电工技术学报,2023(38):1-12.YANY P, YUCH Y, XIONGL J, et al. A multi-objective controller parameter design optimization method of single-phase PWM rectifier with discrete-time domain model [J]. Transactions of China Electrotechnical Society,2023(38):1-12. (in Chinese)

    [9] 张洁, 何文涛, 冯华星. 基于直流无刷电机的PWM电路设计[J]. 微电子学与计算机, 2021, 38(3): 84-88.ZHANGJ, HEW T, FENGH X. The design of PWM circuit based on DC brushless motor[J]. Microelectronics & Computer, 2021, 38(3): 84-88.(in Chinese)

    [10] 史晓娟, 姚兵, 王磊, 等. 基于STM32和LabVIEW的嵌入式可编程控制系统[J]. 仪表技术与传感器, 2023(4): 97-101. doi: 10.3969/j.issn.1002-1841.2023.04.020SHIX J, YAOB, WANGL, et al. Embedded programmable control system based on STM32 and LabVIEW[J]. Instrument Technique and Sensor, 2023(4): 97-101.(in Chinese). doi: 10.3969/j.issn.1002-1841.2023.04.020

    [11] 吴凯, 周悦, 郭威, 等. 海岸带履带机器人控制系统的研究与设计[J]. 制造业自动化, 2022, 44(11):24-28. doi: 10.3969/j.issn.1009-0134.2022.11.007WUK, ZHOUY, GUOW, et al. Research and design of the control system of coastal track robot[J]. Manufacturing Automation, 2022, 44(11):24-28.(in Chinese). doi: 10.3969/j.issn.1009-0134.2022.11.007

    [12] H ZHANG, D Z ZHANG, Z H WANG et al. Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human-computer interaction. ACS Applied Materials & Interfaces, 15, 5128-5138(2023).

    [13] 卢思彤, 李柏晨, 阎吉雅, 等. 柔性仿生手指关节的触觉力/角度感知[J]. 光学 精密工程, 2023, 31(4): 470-478. doi: 10.37188/OPE.20233104.0470LUS T, LIB CH, YANJ Y, et al. A tactile force/Angle perception method for flexible humanoid finger joints[J]. Opt. Precision Eng., 2023, 31(4): 470-478.(in Chinese). doi: 10.37188/OPE.20233104.0470

    [14] Q S AI, M Y ZHAO, K CHEN et al. Flexible coding scheme for robotic arm control driven by motor imagery decoding. Journal of Neural Engineering, 19(2022).

    [15] 赵雪.基于手臂姿态和视觉的遥操作人机协作研究[D].重庆:重庆大学,2021.ZHAOX. Research on Human-Robot Collaboration of Teleoperation Based on Arm Posture and Vision[D]. Chongqing: Chonqqing University,2021.

    [16] 刘正雄, 司继康, 陈刚, 等. 面向遥操作手眼协调的虚拟仿真交互控制方法[J]. 系统工程与电子技术, 2020, 42(5):1146-1151. doi: 10.3969/j.issn.1001-506X.2020.05.23LIUZh X, SIJ K, CHENG, et al. Interaction control method of virtual simulation for hand-eye coordination in teleoperation[J]. Systems Engineering and Electronics, 2020, 42(5):1146-1151. (in Chinese). doi: 10.3969/j.issn.1001-506X.2020.05.23

    [17] 葛俊彦, 史金龙, 周志强, 等. 基于三维检测网络的机器人抓取方法[J]. 仪器仪表学报, 2021, 42(8): 146-153.GEJ Y, SHIJ L, ZHOUZH Q, et al. A robotic grasping method based on three-dimensional detection network[J]. Chinese Journal of Scientific Instrument, 2021, 42(8): 146-153.(in Chinese)

    [18] D SANDRA, S JOÃO, C JAIME. Optimized in-vehicle multi person human body pose detection. Procedia Computer Science, 204, 479-487(2022).

    [19] T KHAN. An intelligent baby monitor with automatic sleeping posture detection and notification. AI, 2, 290-306(2021).

    [20] 郭永兴, 张航, 熊丽, 等. 基于光纤布拉格光栅的扑翼机器人三维扑动变形测量[J]. 光学 精密工程, 2023, 31(9): 1304-1313. doi: 10.37188/OPE.20233109.1304GUOY X, ZHANGH, XIONGL, et al. Fiber Bragg grating based 3D flutter deformation measurement of flapping wing robot[J]. Opt. Precision Eng., 2023, 31(9): 1304-1313.(in Chinese). doi: 10.37188/OPE.20233109.1304

    [21] Y FENG, H LIU, P LIU. Assessment for two-dimensional sliding based on cantilever beams with optical fiber Bragg gratings. Optical Fiber Technology, 67, 102729(2021).

    [22] Y GUO, J ZHU, L XIONG et al. Finger motion detection based on optical fiber Bragg grating with polyimide substrate. Sensors and Actuators A: Physical, 338, 113482(2022).

    [23] 徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学, 2013, 6(3): 306-317. doi: 10.3788/co.20130603.0306XUG Q, XIONGD Y. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Journal of Optics, 2013, 6(3): 306-317.(in Chinese). doi: 10.3788/co.20130603.0306

    [24] L Q LI, R J HE, M S SOARES et al. Embedded FBG-based sensor for joint movement monitoring. IEEE Sensors Journal, 21, 26793-26798(2021).

    [25] T APIWATTANADEJ, B J CHUN, H LEE et al. Stability test of the silicon Fiber Bragg Grating embroidered on textile for joint angle measurement, 10449, 47-52(2017).

    [26] A F GONCALVES, P M MENDES et al. FBG sensing glove for monitoring hand posture. IEEE Sensors Journal, 11, 2442-2448(2011).

    [27] M ZALTIERI, C MASSARONI, DLO PRESTI et al. A wearable device based on a fiber Bragg grating sensor for low back movements monitoring. Sensors (Basel, Switzerland), 20, 3825(2020).

    [28] A D KERSEY, M A DAVIS, H J PATRICK et al. Fiber grating sensors. Journal of Lightwave Technology, 15, 1442-1463(1997).

    Haoxiang WANG, Yan FENG, Ruizhi PAN, Hongpu ZHANG, Yilin ZHOU, Genliang XIONG, Hua ZHANG. Bionic tracing of human and robotic arm based on FBG's wavelength-electric conversion[J]. Optics and Precision Engineering, 2023, 31(23): 3414
    Download Citation