• Spectroscopy and Spectral Analysis
  • Vol. 41, Issue 9, 2800 (2021)
Xing-hu FU*, Zhen-xing WANG, Shuang-yu MA, Fei ZHAO, Xin LU, Guang-wei FU, Wa JIN, and Wei-hong BI
Author Affiliations
  • School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao 066004, China
  • show less
    DOI: 10.3964/j.issn.1000-0593(2021)09-2800-07 Cite this Article
    Xing-hu FU, Zhen-xing WANG, Shuang-yu MA, Fei ZHAO, Xin LU, Guang-wei FU, Wa JIN, Wei-hong BI. Preparation and Properties of Micro-Cavity Silver Modified Fiber SERS Probe[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2800 Copy Citation Text show less
    Experimental device for SERS spectrum detection of micro-cavity fiber probe
    Fig. 1. Experimental device for SERS spectrum detection of micro-cavity fiber probe
    The change of micro-cavity length with etching time(a): Microscope image; (b): Quantitative result figure
    Fig. 2. The change of micro-cavity length with etching time
    (a): Microscope image; (b): Quantitative result figure
    Experimental results of the mixed solution to find the best enhancement effect(a): Raman spectra of nano silver sol and R6G solutions mixed with different mix orders and ratios;(b): Raman intensity of different mixed solutions at Raman shift of 1 510 cm-1
    Fig. 3. Experimental results of the mixed solution to find the best enhancement effect
    (a): Raman spectra of nano silver sol and R6G solutions mixed with different mix orders and ratios;(b): Raman intensity of different mixed solutions at Raman shift of 1 510 cm-1
    Micro-cavity fiber SERS experiment results(a): SERS results of optical fiber micro-cavity with different etching time;(b): Raman intensity of fiber micro-cavity with different etching time at Raman shift of 1 510 cm-1
    Fig. 4. Micro-cavity fiber SERS experiment results
    (a): SERS results of optical fiber micro-cavity with different etching time;(b): Raman intensity of fiber micro-cavity with different etching time at Raman shift of 1 510 cm-1
    The active fiber tip modified with silver nanoparticles by magnetron sputtering method modified with silver nanoparticles by magnetron sputtering method
    Fig. 5. The active fiber tip modified with silver nanoparticles by magnetron sputtering method modified with silver nanoparticles by magnetron sputtering method
    Probe performance results(a): Sensitivity test; (b): Linear relationship between logI and logC centered at 1 362 cm-1 in Raman spectrum
    Fig. 6. Probe performance results
    (a): Sensitivity test; (b): Linear relationship between logI and logC centered at 1 362 cm-1 in Raman spectrum
    Experimental results(a): Reproducibility test of fiber SERS probe; (b): Raman spectra of fiber probe and bare fiber
    Fig. 7. Experimental results
    (a): Reproducibility test of fiber SERS probe; (b): Raman spectra of fiber probe and bare fiber
    Peak/cm-1Linear functionR2
    1 311y=0.359x+5.3560.989
    1 362y=0.290x+5.2640.980
    1 510y=0.326x+5.3980.983
    1 651y=0.358x+4.8570.987
    Table 1. Linear relationships between R6G concentrations and Raman intensities at characteristic peaks of R6G
    Raman peaks/cm-1RSD values/%
    1 1848.427
    1 3118.048
    1 3626.453
    1 5107.525
    1 5757.364
    1 6516.753
    Table 2. RSD values at different major peaks of R6G
    Peak/cm-11 1841 3111 3621 5751 651
    ISERS/(a.u.)2.24×1031.76×1034.63×1032.93×1037.54×103
    IR/(a.u.)0.85×1020.85×1021.90×1020.18×1020.55×102
    cSERS/(mol·L-1)1.00×10-61.00×10-61.00×10-61.00×10-61.00×10-6
    cR/(mol·L-1)1.00×10-11.00×10-11.00×10-11.00×10-11.00×10-1
    AEF2.64×1062.09×1062.44×1061.60×1061.36×106
    Table 3. AEFs of the Raman band centered at 1 184, 1 311, 1 362, 1 575 and 1 651 cm-1
    Xing-hu FU, Zhen-xing WANG, Shuang-yu MA, Fei ZHAO, Xin LU, Guang-wei FU, Wa JIN, Wei-hong BI. Preparation and Properties of Micro-Cavity Silver Modified Fiber SERS Probe[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2800
    Download Citation