• Journal of Innovative Optical Health Sciences
  • Vol. 1, Issue 1, 141 (2008)
BU-HONG LI*, LI-SHENG LIN, HUI-YUN LIN, and SHU-SEN XIE
Author Affiliations
  • Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Normal University Ministry of Education, Fuzhou Fujian 350007, China
  • show less
    DOI: Cite this Article
    BU-HONG LI, LI-SHENG LIN, HUI-YUN LIN, SHU-SEN XIE. SINGLET OXYGEN QUANTUM YIELDS OF PORPHYRIN-BASED PHOTOSENSITIZERS FOR PHOTODYNAMIC THERAPY[J]. Journal of Innovative Optical Health Sciences, 2008, 1(1): 141 Copy Citation Text show less
    References

    [1] D.E. Dolmans, D. Fukumura and R.K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3, 380–387 (2003).

    [2] A. Juzeniene, Q. Peng and J. Moan, “Milestones in the development of photodynamic therapy and fluorescence diagnosis,” Photochem. Photobiol. Sci. 6, 1234–1245 (2007).

    [3] S. Verma, G.M. Watt, Z. Mai and T. Hasan, “Strategies for enhanced photodynamic therapy effects,” Photochem. Photobiol. 83, 96–1005 (2007).

    [4] A.A. Jr. Krasnovsky, K.V. Neverov, S. Yu. Egorov, B. Roeder and T. Levald, “Photophysical studies of pheophorbide a and pheophytin a. Phosphorescence and photosensitized singlet oxygen luminescence,” J Photochem. Photobiol. B. 5, 245–254 (1990).

    [5] R. Venkatesan, N. Periasamy and T.S. Srivastava, “Singlet molecular oxygen quantum yield measurements of some porphyrins and metalloporphyrins,” Proc. Indian Acad. Sci. (Chem. Sci.) 104, 713–722 (1992).

    [6] C. Tanielian, C. Schweitzer, R.Mechin and C.Wolff, “Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative,” Free Radic. Biol. Med. 30, 208–212 (2001).

    [7] S.A. Gerhardt, J.W. Lewis, J.Z. Zhang, R. Bonnett and K.A. McManus, “Photophysical behaviour of an opp-dibenzoporphyrin (2,12-diethyl-3,13-dimethyldibenzo [g,q]porphyrin) in micelles and organic solvents,” Photochem. Photobiol. Sci. 2, 934– 938 (2003).

    [8] S. Mathai, T.A. Smith and K.P. Ghiggino, “Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy,” Photochem. Photobiol. Sci. 6, 995–1002 (2007).

    [9] Z. Huang, “Photodynamic therapy in China: Over 25 years of unique clinical experience part one-history and domestic photosensitizers,” Photodiag. Photodyna. Ther. 3, 3–10 (2006).

    [10] D.Y. Xu, “Research and development of photodynamic therapy photosensitizers in China,” Photodiag. Photodyna. Ther. 4, 13–25 (2007).

    [11] K.R. Weishaupt, C.J. Gomer and T.J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor,” Cancer Res. 36, 2326–2329 (1976).

    [12] M.J. Niedre, C.S. Yu, M.S. Patterson and B.C. Wilson, “Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid,” Br. J. Cancer 92, 298–304 (2005).

    [13] Y. Wei, J. Zhou, D. Xing and Q. Chen, “In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy,” J. Biomed. Opt. 12, Art. No. 014002 (2007).

    [14] B.H. Li, M.T. Jarvi, E.H. Moriyama and B.C. Wilson, “Correlation between cell viability and cumulative singlet oxygen luminescence from protoporphyrin IX in varying subcellular localizations,” In Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XVI Vol. 6427 (Edited by D. Kessel), Art. No. 642707. The International Society for Optical Engineering, San Jose, CA (2007).

    [15] K.D. Belfield, C.C. Corredor, A.R. Morales, M.A. Dessources and F.E. Hernandez, “Synthesis and characterization of new fluorene-based singlet oxygen sensitizers,” J. Fluoresc. 16, 105–110 (2006).

    [16] K.D. Belfield, M.V. Bondar and O.V. Przhonska, “Singlet oxygen quantum yield determination for a fluorene-based two-photon photosensitizer,” J. Fluoresc. 16, 111– 117 (2006).

    [17] S.J. Andrasik, K.D. Belfield, M.V. Bondar, F.E. Hernandez, A.R. Morales, O.V. Przhonska and S. Yao, “One- and two-photon singlet oxygen generation with new fluorene-based photosensitizers,” ChemPhysChem 8, 399–404 (2007).

    [18] R.W. Redmond and J.N. Gamlin, “A compilation of singlet oxygen yields from biologically relevant molecules,” Photochem. Photobiol. 70, 391–475 (1999).

    [19] W. Spiller, H. Kliesch, D.W¨ohrle, S. Hackbarth, B. R¨oder and G. Schnurpfeil, “Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions,” J. Porphyrins Phthalocyanines 2, 145–158 (1998).

    [20] R. Dˇedic, A. Moln′ar, M. Koˇr′ nek, A. Svoboda, J. Pˇsenˇc′ k and J. H′ala, “Spectroscopic study of singlet oxygen photogeneration in meso-tetra-sulphonatophenyl-porphin,” J. Lumin. 108, 117–119 (2004).

    [21] M. Koˇr′ nek, R. Dˇedic, A. Moln′ar and J. H′ala, “The influence of human serum albumin on the photogeneration of singlet oxygen by meso-Tetra(4-sulfonatophenyl)porphyrin. An infrared phosphorescence study,” J. Fluoresc. 16, 355–359 (2006).

    BU-HONG LI, LI-SHENG LIN, HUI-YUN LIN, SHU-SEN XIE. SINGLET OXYGEN QUANTUM YIELDS OF PORPHYRIN-BASED PHOTOSENSITIZERS FOR PHOTODYNAMIC THERAPY[J]. Journal of Innovative Optical Health Sciences, 2008, 1(1): 141
    Download Citation