• Photonics Research
  • Vol. 10, Issue 9, 2099 (2022)
Anton Rudenko1、*, Maria K. Hagen2, Jörg Hader1, Stephan W. Koch1、2, and Jerome V. Moloney1
Author Affiliations
  • 1Arizona Center for Mathematical Sciences and Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
  • 2Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Marburg 35032, Germany
  • show less
    DOI: 10.1364/PRJ.463258 Cite this Article Set citation alerts
    Anton Rudenko, Maria K. Hagen, Jörg Hader, Stephan W. Koch, Jerome V. Moloney. Self-consistent Maxwell–Bloch model for high-order harmonic generation in nanostructured semiconductors[J]. Photonics Research, 2022, 10(9): 2099 Copy Citation Text show less
    References

    [1] A. Krasnok, M. Tymchenko, A. Alù. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21, 8-21(2018).

    [2] B. Sain, C. Meier, T. Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photon., 1, 024002(2019).

    [3] G. Grinblat. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control. ACS Photon., 8, 3406-3432(2021).

    [4] V. Zubyuk, L. Carletti, M. Shcherbakov, S. Kruk. Resonant dielectric metasurfaces in strong optical fields. APL Mater., 9, 060701(2021).

    [5] D. A. Smirnova, A. B. Khanikaev, L. A. Smirnov, Y. S. Kivshar. Multipolar third-harmonic generation driven by optically induced magnetic resonances. ACS Photon., 3, 1468-1476(2016).

    [6] S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, E. Ubyivovk, D. A. Smirnova, S. Starikov, B. N. Chichkov, Y. S. Kivshar. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett., 17, 3047-3053(2017).

    [7] S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, I. Brener. Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces. Nano Lett., 16, 5426-5432(2016).

    [8] Z. Liu, J. Wang, B. Chen, Y. Wei, W. Liu, J. Liu. Giant enhancement of continuous wave second harmonic generation from few-layer GaSe coupled to high-Q quasi bound states in the continuum. Nano Lett., 21, 7405-7410(2021).

    [9] C. Gigli, G. Leo. All-dielectric χ(2) metasurfaces: recent progress. Opto-Electron. Adv., 5, 210093(2022).

    [10] S. Ghimire, D. A. Reis. High-harmonic generation from solids. Nat. Phys., 15, 10-16(2019).

    [11] O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, R. Huber. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics, 8, 119-123(2014).

    [12] M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y. Naumov, D. Villeneuve, C. Ropers, P. Corkum. Tailored semiconductors for high-harmonic optoelectronics. Science, 357, 303-306(2017).

    [13] H. Liu, C. Guo, G. Vampa, J. L. Zhang, T. Sarmiento, M. Xiao, P. H. Bucksbaum, J. Vučković, S. Fan, D. A. Reis. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat. Phys., 14, 1006-1010(2018).

    [14] M. R. Shcherbakov, H. Zhang, M. Tripepi, G. Sartorello, N. Talisa, A. AlShafey, Z. Fan, J. Twardowski, L. A. Krivitsky, A. I. Kuznetsov, E. Chowdhury, G. Shvets. Generation of even and odd high harmonics in resonant metasurfaces using single and multiple ultra-intense laser pulses. Nat. Commun., 12, 4185(2021).

    [15] G. Zograf, K. Koshelev, A. Zalogina, V. Korolev, R. Hollinger, D.-Y. Choi, M. Zuerch, C. Spielmann, B. Luther-Davies, D. Kartashov, S. V. Makarov, S. S. Kruk, Y. Kivshar. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photon., 9, 567-574(2022).

    [16] M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P. Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I. Brener, A. A. Fedyanin. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun., 8, 17(2017).

    [17] A. Mazzanti, E. A. A. Pogna, L. Ghirardini, M. Celebrano, A. Schirato, G. Marino, A. Lematre, M. Finazzi, C. De Angelis, G. Leo, G. Cerullo, G. D. Valle. All-optical modulation with dielectric nanoantennas: multiresonant control and ultrafast spatial inhomogeneities. Small Sci., 1, 2000079(2021).

    [18] I. S. Sinev, K. Koshelev, Z. Liu, A. Rudenko, K. Ladutenko, A. Shcherbakov, Z. Sadrieva, M. Baranov, T. Itina, J. Liu, A. A. Bogdanov, Y. Kivshar. Observation of ultrafast self-action effects in quasi-BIC resonant metasurfaces. Nano Lett., 21, 8848-8855(2021).

    [19] E. A. A. Pogna, M. Celebrano, A. Mazzanti, L. Ghirardini, L. Carletti, G. Marino, A. Schirato, D. Viola, P. Laporta, C. De Angelis, G. Leo, G. Cerullo, M. Finazzi, G. D. Valle. Ultrafast, all optically reconfigurable, nonlinear nanoantenna. ACS Nano, 15, 11150-11157(2021).

    [20] S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, P. Belov. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma. Nano Lett., 15, 6187-6192(2015).

    [21] P. Xia, C. Kim, F. Lu, T. Kanai, H. Akiyama, J. Itatani, N. Ishii. Nonlinear propagation effects in high harmonic generation in reflection and transmission from gallium arsenide. Opt. Express, 26, 29393-29400(2018).

    [22] I. Kilen, M. Kolesik, J. Hader, J. V. Moloney, U. Huttner, M. K. Hagen, S. W. Koch. Propagation induced dephasing in semiconductor high-harmonic generation. Phys. Rev. Lett., 125, 083901(2020).

    [23] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, R. Huber. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature, 523, 572-575(2015).

    [24] M. K. Hagen, S. W. Koch. Probing intervalence band coupling via high-harmonic generation in binary zinc-blende semiconductors. Phys. Status Solidi, 15, 2100397(2021).

    [25] U. Huttner, M. Kira, S. W. Koch. Ultrahigh off-resonant field effects in semiconductors. Laser Photon. Rev., 11, 1700049(2017).

    [26] D. Matteo, J. Pigeon, S. Y. Tochitsky, U. Huttner, M. Kira, S. Koch, J. Moloney, C. Joshi. Control of the nonlinear response of bulk GaAs induced by long-wavelength infrared pulses. Opt. Express, 27, 30462-30472(2019).

    [27] M. Hussain, F. Lima, W. Boutu, H. Merdji, M. Fajardo, G. O. Williams. Demonstration of nonperturbative and perturbative third-harmonic generation in MgO by altering the electronic structure. Phys. Rev. A, 105, 053103(2022).

    [28] W. Cartar, J. Mørk, S. Hughes. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers. Phys. Rev. A, 96, 023859(2017).

    [29] J. R. Gulley, D. Huang. Self-consistent quantum-kinetic theory for interplay between pulsed-laser excitation and nonlinear carrier transport in a quantum-wire array. Opt. Express, 27, 17154-17185(2019).

    [30] R. Buschlinger, M. Lorke, U. Peschel. Light-matter interaction and lasing in semiconductor nanowires: a combined finite-difference time-domain and semiconductor Bloch equation approach. Phys. Rev. B, 91, 045203(2015).

    [31] K. Ravi, Q. Wang, S.-T. Ho. A multi-band, multi-level, multi-electron model for efficient FDTD simulations of electromagnetic interactions with semiconductor quantum wells. J. Mod. Opt., 62, 1158-1182(2015).

    [32] C. Jirauschek, M. Riesch, P. Tzenov. Optoelectronic device simulations based on macroscopic Maxwell–Bloch equations. Adv. Theor. Simul., 2, 1900018(2019).

    [33] A. Rudenko, K. Ladutenko, S. Makarov, T. E. Itina. Photogenerated free carrier-induced symmetry breaking in spherical silicon nanoparticle. Adv. Opt. Mater., 6, 1701153(2018).

    [34] J.-K. An, K.-H. Kim. Efficient non-perturbative high-harmonic generation from nonlinear metasurfaces with low pump intensity. Opt. Laser Technol., 135, 106702(2021).

    [35] A. Rudenko, M. K. Hagen, J. Hader, M. Kolesik, S. W. Koch, J. V. Moloney. Maxwell-semiconductor Bloch simulations of high-harmonic generation in finite thickness semiconductor slabs. Proc. SPIE, 11999, 119990A(2022).

    [36] A. Taflove, S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method(1995).

    [37] G. Kresse, J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 49, 14251-14269(1994).

    [38] G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci, 6, 15-50(1996).

    [39] J. Heyd, J. E. Peralta, G. E. Scuseria, R. L. Martin. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys., 123, 174101(2005).

    [40] G. Mie. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys., 330, 377-445(1908).

    Anton Rudenko, Maria K. Hagen, Jörg Hader, Stephan W. Koch, Jerome V. Moloney. Self-consistent Maxwell–Bloch model for high-order harmonic generation in nanostructured semiconductors[J]. Photonics Research, 2022, 10(9): 2099
    Download Citation