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In pursuit of efficient high-order harmonic conversion in semiconductor devices, modeling insights into the
complex interplay among ultrafast microscopic electron–hole dynamics, nonlinear pulse propagation, and field
confinement in nanostructured materials are urgently needed. Here, a self-consistent approach coupling semi-
conductor Bloch and Maxwell equations is applied to compute transmission and reflection high-order harmonic
spectra for finite slab and sub-wavelength nanoparticle geometries. An increase in the generated high harmonics
by several orders of magnitude is predicted for gallium arsenide nanoparticles with a size maximizing the magnetic
dipole resonance. Serving as a conceptual and predictive tool for ultrafast spatiotemporal nonlinear optical
responses of nanostructures with arbitrary geometry, our approach is anticipated to deliver new strategies for
optimal harmonic manipulation in semiconductor metadevices. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.463258

1. INTRODUCTION

All-dielectric nanostructured materials have been extensively
applied to enhance and confine electric and magnetic fields at
subwavelength scales for nonlinear optical applications [1–4].
Several strategies were proposed to increase the second- and
third-order nonlinear conversion efficiency in semiconductors,
based on Mie resonances in high-refractive-index nanostruc-
tures [5,6], as well as resonant metasurfaces [7–9]. Recently,
a new paradigm of harmonic generation beyond the perturba-
tive regime by strong field excitation has been demonstrated in
semiconductors, opening new frontiers for previously non-
accessible enhanced high-order harmonic spectra, consisting
of odd and even harmonics and stretching far beyond third-or-
der nonlinearities [10–15], and ultrafast all-optical modulation
[16–19]. Comprehensive understanding of these coherent non-
linear excitation processes in semiconductors is still lacking, and
self-consistent models are highly challenging due to the inclu-
sion of the dynamical material response on a quantum level
beyond the perturbative regime. Nonlinear conversion effi-
ciency depends strongly on multiple involved phenomena such
as intra-band and inter-band excitation dynamics [10,11,17],
absorption induced by free carriers limiting the harmonics
yield above the material bandgap [7] and shifting the nano-
structure resonance positions [4,20], and nonlinear propaga-
tion effects [21,22].

The nature of odd and even harmonic generation in semi-
conductors has been established only recently, underlying the
pronounced role of quantum interference and indirect transi-
tions between valence and conduction bands [11,23,24]. The
latter effects can be described by a quantum approach, as pro-
vided by semiconductor Bloch equations (SBEs) under inclu-
sion of more than two mutually dipole coupled bands [25].
This momentum-resolved approach evaluates microscopic co-
herent carrier densities and polarizations within the non-
equilibrium electronic system, considering the full Brillouin
zone (BZ). Typically, a realistic model for the electronic band
structure for a particular semiconductor is provided by density
functional theory (DFT) simulations. In contrast to perturba-
tive models, SBEs automatically include nonlinearities of any
order as well as the full dynamic evolution of electronic material
excitations. Furthermore, the non-perturbative nonlinearities
were shown to play a significant role in off-resonant strong-field
excitation and high-harmonic generation in semiconductors,
attributed to dynamic intra-band oscillations that can be cap-
tured only by employing a dynamic microscopic model such as
SBEs [26,27]. These non-perturbative scaling laws for high har-
monics are influential in gallium arsenide (GaAs) for laser
intensities of at least 1 GW∕cm2 [21,26] and can lead to an
increase in the high-harmonic yield.

To simulate the nonlinear spectrum evolution upon ultra-
short laser pulse propagation through bulk material, the SBEs
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were further coupled to unidirectional or 1D/2D propagation
codes by macroscopic polarization currents [22,28,29]. To
date, only a few works have focused on the self-consistent
coupling between full-vector Maxwell equations and SBEs
[30–32], albeit not for harmonic generation. A 3D modeling
is essential here not only to reproduce the exact geometry and
resonant nature of the nanostructures, but also to take
account the inhomogeneous distribution of laser-induced
carriers [17,18,33,34].

In the current work, we demonstrate the feasibility and ro-
bustness of a coupled Maxwell–Bloch approach for investigat-
ing the high-order harmonic spectra for finite slab and 3D sub-
wavelength nanoparticle geometries in the non-perturbative re-
gime of ultrashort laser pulse excitation. Driven by either a
Fabry–Perot-like standing wave resonator or magnetic dipole
resonances, inhomogeneously photo-induced carriers are local-
ized in the semiconductor material, producing enhanced even
and odd harmonics.

2. NUMERICAL MODEL

The approach consists of two coupled parts: Maxwell equations
with nonlinear polarization ~P and current ~J sources responsible
for inter-band and intra-band excitations, respectively, and dy-
namic SBEs, here utilizing a three-band structure model of a
direct-gap non-centrosymmetric semiconductor using material
parameters representative of GaAs. The SBEs are sourced by
the electric field ~E providing the non-perturbative material re-
sponses in the form of macroscopic polarization and current for
Maxwell input. The SBEs are solved in each spatial point of the
nonlinear material.

A. Propagation
The propagation model is based on full-vector Maxwell equa-
tions with macroscopic currents to include linear dispersion
and inter-band and intra-band excitation upon ultrashort pulse
excitation as follows:8>><

>>:

∂~E
∂t � ∇× ~H

ϵ0ϵb
−
P

i
~Jdispi �~J�∂~P

∂t
ϵ0ϵb

∂ ~H
∂t � − ∇×~E

μ0

, (1)

where ~E and ~H are electric and magnetic fields, and ϵ0 and μ0
are the permittivity and permeability of free space, respectively;
ϵb is the background dielectric constant. The dispersion
relation for our GaAs model is applied from Ref. [35] through

the current ~Jdispi in Eq. (1). ~J and ∂~P
∂t correspond to inter- and

intra-band currents, respectively.
Throughout the paper, a linearly polarized plane wave ex-

citation source is used. The electric field source is chosen to
be an x-polarized Gaussian pulse with a full width at half maxi-
mum of θ � 100 fs. Light propagates along the z direction.
Maxwell equations are solved by a finite-difference time-do-
main (FDTD) approach with convolutional perfectly matched
layers (CPMLs) at the boundaries [36]. For the 1D problem, a
spatial step of 10 nm and temporal step of ≈2 as were chosen.
For the 3D problem, the corresponding resolution was 5 nm
spatially and ≈4 as temporally. Generally, temporal steps

smaller than the ones defined by the Courant–Friedrichs–
Lewy condition were required to resolve high-order harmonics.

B. Electronic Band Structure
Our GaAs band structure parameters are obtained via DFT as-
suming (111) crystal orientation. In our simulations, we in-
clude the mutually dipole coupled conduction e, split-off
valence band h1, and light hole valence band h2. The dipole
coupling strength d ll 0 for the corresponding electronic transi-
tions l l 0 and energy dispersion of each band εl , shown in Figs. 1
(a) and 1(b), are derived as a fit to the results of our DFT cal-
culation using the Vienna ab initio simulation package [37,38].
The accurate reproduction of the bandgap is realized by em-
ploying the Heyd–Scuseria–Ernzerhof hybrid functional [39]
customized for GaAs. To keep our evaluations as simple as pos-
sible, we neglect the dipole phases and Berry phases, which is an
acceptable approximation for the chosen excitation conditions
[24]. We use a momentum grid size �−kmax; kmax� with 1200
points, where kmax �

ffiffiffi
3

p
π∕a, and a � 5.663 Å is the lattice

constant. Our consideration of a single path through the BZ
along Γ-L direction is justified by the use of a linearly polarized
source along this direction. To avoid nonphysical reflections at
the boundaries of the BZ, a third-order polynomial fit is applied
to the energy boundary points to conserve both the energy val-
ues and their derivatives. The resulting energy gradients ∇kϵl
are shown in Fig. 1(c), smoothly decaying to zero at the edges of
the grid.

C. Semiconductor Bloch Equations
The macroscopic intra-band current and inter-band polariza-
tion are calculated through complex microscopic polarizations
pll 0k and carrier distributions f l

k as follows:8>><
>>:

Px �
P
k, l , l 0

d ll 0
k Re�pll 0k �,

Jx � e
ℏ

P
k, l
�∇kε

l
k�f l

k,
(2)

where l , l 0 stand for the electron e or hole h1, h2 bands, and the
summation is performed for all momentum points k. SBEs
with sourced linearly x-polarized electric fields [25] are solved
to define the microscopic polarizations and carrier densities as
follows:8>>>>>>>>>>>><
>>>>>>>>>>>>:

iℏ ∂
∂tp

hie
k ��εek�εhik �ieEx�t�∇k−iℏ∕T 2�phiek

��dhjhi
k p

hje
k −d

ehj
k p

hihj
k −d ehi

k �1−f e
k−f

hi
k ��Ex�t�,

iℏ ∂
∂tp

h1h2
k ��εh1k −εh2k �ieEx�t�∇k−iℏ∕T 2�ph1h2k

��d eh1
k peh2k −dh2e
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e
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P
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k,

ℏ ∂
∂tf

hi
k �−2Ex�t��Im�dhjhi

k p
hjhi
k ��Im�d ehi

k pehik ���eEx�t�∇kf
hi
k ,

(3)

where i � 1, 2, j ≠ i, T 2 � 20 fs is the dephasing time, and
Re�⋅� and Im�⋅� stand for the real and the imaginary parts of the
microscopic polarization, respectively. Since the Coulomb
interaction was shown to play only a minor role for off-resonant
strong field excitation, it is sufficient for the present purposes to
include it only via the dephasing term [11]. The microscopic

2100 Vol. 10, No. 9 / September 2022 / Photonics Research Research Article



carriers in the conduction band are summed up and
averaged through N � 1200 momentum points as follows:
Ne �

PN
k f e

k∕N .
To solve the SBEs, a fourth-order Runge–Kutta method is

applied for the ensemble of microscopic polarizations pll
0

k and
carrier distributions f l

k. Macroscopic quantities Px and Jx
are then evaluated according to Eq. (2) after each four-step
procedure. A fully symmetric fourth-order finite-difference
approximation is implemented for microscopic gradient values
∇kpl l

0
k and ∇kf l

k. Periodic boundary conditions are then ap-
plied for the microscopic polarizations and distributions at
the borders of the BZ. For an uncoupled SBE model, the elec-
tric field is sourced directly to the SBE, and the Fourier trans-
forms of the local emission spectra jiJx � Pxωj2 are plotted for
the laser wavelengths of interest in Fig. 1(d). The results with
N � 1200 momentum points have been tested for conver-
gence, giving identical results for the larger number of points
N � 2400. The local emission spectra indicate a complex
behavior for high-order odd and even harmonics. The odd
harmonics are mainly the consequence of direct transitions
from the valence to conduction band, which can be illustrated
by a perturbative expansion of the contributions to the material
responses from SBEs. Equation (3) for microscopic polariza-
tions gives rise to odd-order terms that involve only the
coupling between two bands dhie

k �1 − f e
k − f

hi
k �Ex ∝ dhieE�

dhie3E3 �…, whereas the even order contributions appear

in mixed terms of the expansion �dhihj
k p

hje
k − d

hje
k p

hihj
k �Ex ∝

dhihj d hjeE2 � �dhihj d hje�2E4 �…, which show a coupling of
three bands and can be attributed to indirect transition path-
ways. As a result, at least a three-band structure is required to
fully describe both even and odd harmonics in our model.

In the framework of the SBE model, the major changes
in both real and imaginary refractive indices are considered
via the complex intra-band and inter-band currents. Band-
filling dynamics is included via the Pauli blocking factor
�1 − f e

k − f
h
k�, which reduces the oscillation strength as the

plasma density increases. Complementary contributions might
be expected by the bandgap shrinkage due to carrier–carrier
scattering in Coulomb interactions, which are not included
in the current model and could be further incorporated in
the semiconductor Bloch formalism as proposed in Ref.
[25]. It was shown in that reference that for strongly off-
resonant excitation, Coulomb effects do not lead to additional
features, but influence only spectral details and do so only in
materials with exceptionally high Coulomb interaction such as
transition metal dichalcogenide monolayers (TMDCs). For the
GaAs system investigated here, Coulomb-induced renormaliza-
tions are almost two orders of magnitude smaller than in
TMDCs and should be of minor importance. Including
Coulomb effects would dramatically increase the numerical ef-
fort. Therefore, we include only the Coulomb scattering effects
through the polarization dephasing term but neglect the
bandgap and field renormalization.

D. Coupling Maxwell Equations and SBEs
Our numerical method for the coupled Maxwell Eq. (1) and
SBE Eq. (3) evaluates additionally the nonlinear electric field
component Ex inside a fourth-order Runge–Kutta procedure
applied for the microscopic polarization and carrier densities.
The macroscopic quantities at each spatial position affect the
carrier dynamics and nonlinear propagation at each subsequent
temporal step. Our computing algorithm uses spatially parallel
implementation based on graphics processing units (GPUs).

Fig. 1. (a)–(c) Three-band structure for a non-centrosymmetric direct-gap semiconductor: GaAs (111) inspired (a) dipole coupling strength,
(b) energies, and (c) their gradients. (d) High-harmonic spectra generated by an SBE model for E � 108 V∕m, θ � 100 fs FWHM pulse duration
and long-, mid-, and near-infrared wavelengths λ.
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The field is sourced in vacuum at a distance from the non-
linear material. The time history of the electric field evolution is
recorded in space positions before and after hitting the semi-
conductor material to obtain separate reflected and transmitted
field signals, which are then further analyzed by Fourier trans-
forms. A harmonic and decaying window function is applied at
the boundaries of the temporal domain [35] to reduce the noise
floor due to the finite size of the used Gaussian
pulse and the accumulation effects related to the numerical
dispersion.

3. RESULTS AND DISCUSSION

For our study, there are two specific regimes of interest for har-
monic generation in semiconductor nanomaterials: a propaga-
tive regime in finite structures on the distances of order or larger
than laser wavelength and a field confinement regime in sub-
wavelength nanostructures, where the field can be significantly
enhanced and the photo-generated carriers are localized inside
the nanostructure.

A. Propagation in a Finite Slab: Fabry–Perot
Resonances
First, we investigate the ultrashort laser pulse propagation
through finite slabs of different thicknesses, effectively repre-
senting examples of a Fabry–Perot resonator due to the refrac-
tive index differences between vacuum and semiconductor
material. Light waves entering the slab, being smaller than
the optical pulse length d < cθ ≈ 30 μm, undergo multiple
partial reflections, constructively interfering at the resonant fre-
quency. Apart from creating multiple transmitted sub-pulses,
nonlinear propagation is accompanied by the generation of

electron densities and absorption losses upon propagation. For
our study, an ultrashort pulse with a fundamental λ � 10.6 μm
wavelength is chosen exhibiting a pronounced interplay of di-
rect and indirect inter-band transitions contributing to high-
order harmonic generation.

The spatiotemporal evolution of the electric fields for slab
thicknesses of 12 and 24 μm is shown in Figs. 2(a) and 2(c)
with the laser pulse propagating from down upwards. We
see that for the thicker slab, the first and secondary reflection
signals are separated in time, whereas for the thinner slab, they
overlap. The maximum electron density distributions estab-
lished at the end of the pulse are detailed in Figs. 2(b) and
2(d), representing periodic concentrated regions of increased
charge carriers spaced by λ∕n ≈ 3.1 μm, created by standing
waves as a result of an interference between the transmitted
and reflected waves from the slab boundaries (t > 1 ps).
Strong spatial density gradients are formed on the back side
of the slab, potentially contributing to an enhanced harmonic
yield.

In Fig. 3(a), we show spectra of the transmitted fields as a
function of the propagation distance in comparison to the local
emission spectrum jiJx � Pxωj2 obtained by the uncoupled
SBE model. Here, we refer to the uncoupled point SBE model
by indicating that the electric field is sourced by a plane wave
source inside the material without solving Maxwell equations,
i.e., excluding propagation effects. We note that the harmonic
yield tends to increase for a larger slab thickness, keeping ap-
proximately a similar shape to the spectrum of the point model.
In addition, the appearance of the sub-harmonics is also appar-
ent between sixth and seventh harmonics attributed to fre-
quency mixing in nonlinear propagation, as well non-trivial

(a) (b)

(c) (d)

Fig. 2. Spatiotemporal evolution of (a), (c) electric fields, (b), (d) averaged carrier densities inside the slab of (a), (b) 12 μm and (c), (d) 24 μm
thicknesses. Laser irradiation parameters are E � 108 V∕m, θ � 100 fs FWHM pulse duration, and λ � 10.6 μm. ~k indicates the propagation
direction of laser pulse. Solid lines in (a), (c) show the position of the slab.
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behavior for higher-order harmonics with increasing propaga-
tion distance.

Reflection and transmission spectra are compared for 12 and
48 μm slabs in Figs. 3(b)–3(e) [Fourier transforms in Figs. 3(b)
and 3(c), and corresponding temporal signals in Figs. 3(d)
and 3(e)].

B. Subwavelength Nanoparticle: Excitation of Mie
Resonances
Nonlinear field effects can be significantly enhanced in sub-
wavelength nanostructures of high-refractive-index materials
supporting Mie resonances. We investigate here the ultrashort
laser pulse excitation of a single spherical GaAs-like nanopar-
ticle at λ � 1.5 μm near-infrared wavelength (refractive index
n � 3.3817, transparency range). In this excitation regime, the
harmonics starting from the second lie above the material
bandgap (Eg � 1.42 eV). Nevertheless, as the considered sub-
wavelength radii in the range 150–240 nm are much smaller
than the attenuation length of the photo-induced free carriers,
the generated harmonics can be efficiently extracted, even if
lying within the absorption region.

Extinction cross sections as a function of the nanoparticle
radii at 1.5 μm wavelength are calculated by Mie theory [40]

and plotted in Fig. 4(a). The sizes of choice are marked by
colored points, corresponding to different positions respective
to a magnetic dipole resonance (“MD” in the figure) and con-
trasting electric field distributions inside the nanoparticles. The
intensities corresponding to an incident field E � 108 V∕m
are plotted in Figs. 4(c)–4(f ) for the sizes of 150, 180, 210,
and 240 nm, respectively. For the smallest nanoparticle within
the Rayleigh range, the fields inside the material are weak and
almost homogeneous. In contrast, larger sizes exhibit toroidal
field distribution with the strongest field enhancement for ra-
dius 210 nm close to the magnetic dipole resonance. With in-
creasing size, the intensity decreases following the extinction
cross section. The resulting 1D spatial carrier distributions
along the propagation direction (left to right) are compared
for different radii in Fig. 4(b). The highest values and inhomo-
geneity of charge densities are obtained for the nanoparticle of
210 nm radius.

Figures 5(a) and 5(b) show the computed transmission and
reflection spectra for nanoparticles of different radii, indicating
the excitation of second-, third-, and fourth-order harmonics.
The field spectra are collected at (0, 0, 1) and �0, 0, −1� μm,
respectively, at 1 μm distance from the nanoparticle center
along propagation axis z. The harmonic yield for the nanopar-
ticle R � 210 nm close to the magnetic dipole resonance ex-
ceeds by several orders of magnitude the results for off-resonant
particles of smaller sizes R � 150 nm and R � 180 nm, as
well as at least by two orders the nonlinear efficiency of third-
and fourth-order harmonics for a larger nanoparticle of
R � 240 nm, close to an electric dipole resonance.

4. CONCLUSION

In conclusion, we have introduced a microscopic Maxwell–SBE
model that allows us to fully analyze high-harmonic generation
in semiconductor nanostructures. This approach can be fully
customized to accurately model a specific semiconductor
material and explicitly consider different crystal orientations
and direction-dependent effects. Time-dependent carrier dy-
namics and individual band contributions are fully accessible,
allowing us to pinpoint the influences of band structure fea-
tures. Additionally, phase-dependent effects could be incorpo-
rated, including but not limited to the influence of Berry phases
for topologically non-trivial materials. The model is also flexible
to include different features of the driving field in the analysis,
e.g., carrier–envelope phase or even a combination of resonant
and off-resonant pulses. This specificity allows for a highly im-
proved quantitative comparison with experimental measure-
ments implying different polarization states without relying
on experimental or phenomenological input. The coupled
SBEs and Maxwell equations approach can be applied to com-
plex geometries and metasurfaces, benefiting from the periodic
boundary conditions for electric and magnetic fields in the
Maxwell solver.

We apply our model to the regimes of ultrashort pulse
propagation in a finite slab, supporting Fabry–Perot resonan-
ces, and in a subwavelength nanoparticle, supporting magnetic
dipole Mie resonance. Both regimes are characterized by inho-
mogeneous carrier distribution inside the structures and gener-
ation of even and odd harmonics of a higher yield for resonant

Fig. 3. (a) Transmission spectra (solid lines) upon propagation on
distances of compared to the emission spectra from point SBE model
(dashed line). Comparison of transmission (red) and reflection (blue)
spectra for slabs of (b) 12 μm and (c) 48 μm thickness; temporal evo-
lution of the corresponding electric fields for (d) 12 μm and (e) 48 μm
slabs. Incident pulses are marked by yellow boxes. Laser irradiation
parameters are E � 108 V∕m, θ � 100 fs FWHM pulse duration,
and λ � 10.6 μm.
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conditions. Overall, implementation of our self-consistent
approach to arbitrary geometries has a strong potential for op-
timal design of semiconductor optical metadevices, with emerg-
ing applications for high-resolution imaging and attosecond
science.
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Fig. 5. (a) Transmission and (b) reflection spectra for GaAs nanoparticles of different radii. Laser irradiation parameters are E � 108 V∕m,
θ � 100 fs FWHM pulse duration, and λ � 1.5 μm.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) Extinction cross section for GaAs nanoparticles of different radii. Magnetic dipole (MD), electric dipole (ED), and magnetic qudrupole
(MQ) resonances are indicated. (b) 1D conduction band densities N e at the distance from the nanoparticle center zero along propagation direction
z. (c)–(f ) Averaged intensity distributions in the propagation plane (2D) for GaAs nanoparticles excited by E � 108 V∕m incident field
at fundamental wavelength λ � 1.5 μm. Corresponding radii R are indicated above each sub-figure. Laser polarization ~E and propagation direction
~k are shown.

2104 Vol. 10, No. 9 / September 2022 / Photonics Research Research Article



Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented
in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

REFERENCES
1. A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a

paradigm shift in nonlinear optics,” Mater. Today 21, 8–21 (2018).
2. B. Sain, C. Meier, and T. Zentgraf, “Nonlinear optics in all-dielectric

nanoantennas and metasurfaces: a review,” Adv. Photon. 1,
024002 (2019).

3. G. Grinblat, “Nonlinear dielectric nanoantennas and metasurfaces:
frequency conversion and wavefront control,” ACS Photon. 8,
3406–3432 (2021).

4. V. Zubyuk, L. Carletti, M. Shcherbakov, and S. Kruk, “Resonant di-
electric metasurfaces in strong optical fields,” APL Mater. 9,
060701 (2021).

5. D. A. Smirnova, A. B. Khanikaev, L. A. Smirnov, and Y. S. Kivshar,
“Multipolar third-harmonic generation driven by optically induced mag-
netic resonances,” ACS Photon. 3, 1468–1476 (2016).

6. S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N.
Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, E. Ubyivovk, D. A.
Smirnova, S. Starikov, B. N. Chichkov, and Y. S. Kivshar, “Efficient
second-harmonic generation in nanocrystalline silicon nanoparticles,”
Nano Lett. 17, 3047–3053 (2017).

7. S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M.
Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly
enhanced second-harmonic generation using III-V semiconductor all-
dielectric metasurfaces,” Nano Lett. 16, 5426–5432 (2016).

8. Z. Liu, J. Wang, B. Chen, Y. Wei, W. Liu, and J. Liu, “Giant enhance-
ment of continuous wave second harmonic generation from few-layer
GaSe coupled to high-Q quasi bound states in the continuum,” Nano
Lett. 21, 7405–7410 (2021).

9. C. Gigli and G. Leo, “All-dielectric χ(2) metasurfaces: recent progress,”
Opto-Electron. Adv. 5, 210093 (2022).

10. S. Ghimire and D. A. Reis, “High-harmonic generation from solids,”
Nat. Phys. 15, 10–16 (2019).

11. O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U.
Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-
cycle control of terahertz high-harmonic generation by dynamical
Bloch oscillations,” Nat. Photonics 8, 119–123 (2014).

12. M. Sivis, M. Taucer, G. Vampa, K. Johnston, A. Staudte, A. Y.
Naumov, D. Villeneuve, C. Ropers, and P. Corkum, “Tailored semi-
conductors for high-harmonic optoelectronics,” Science 357, 303–
306 (2017).

13. H. Liu, C. Guo, G. Vampa, J. L. Zhang, T. Sarmiento, M. Xiao, P. H.
Bucksbaum, J. Vučković, S. Fan, and D. A. Reis, “Enhanced high-har-
monic generation from an all-dielectric metasurface,” Nat. Phys. 14,
1006–1010 (2018).

14. M. R. Shcherbakov, H. Zhang, M. Tripepi, G. Sartorello, N. Talisa, A.
AlShafey, Z. Fan, J. Twardowski, L. A. Krivitsky, A. I. Kuznetsov, E.
Chowdhury, and G. Shvets, “Generation of even and odd high har-
monics in resonant metasurfaces using single and multiple ultra-in-
tense laser pulses,” Nat. Commun. 12, 4185 (2021).

15. G. Zograf, K. Koshelev, A. Zalogina, V. Korolev, R. Hollinger, D.-Y.
Choi, M. Zuerch, C. Spielmann, B. Luther-Davies, D. Kartashov,
S. V. Makarov, S. S. Kruk, and Y. Kivshar, “High-harmonic generation
from resonant dielectric metasurfaces empowered by bound states in
the continuum,” ACS Photon. 9, 567–574 (2022).

16. M. R. Shcherbakov, S. Liu, V. V. Zubyuk, A. Vaskin, P. P.
Vabishchevich, G. Keeler, T. Pertsch, T. V. Dolgova, I. Staude, I.
Brener, and A. A. Fedyanin, “Ultrafast all-optical tuning of direct-
gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).

17. A. Mazzanti, E. A. A. Pogna, L. Ghirardini, M. Celebrano, A. Schirato,
G. Marino, A. Lematre, M. Finazzi, C. De Angelis, G. Leo, G. Cerullo,
and G. D. Valle, “All-optical modulation with dielectric nanoantennas:
multiresonant control and ultrafast spatial inhomogeneities,” Small
Sci. 1, 2000079 (2021).

18. I. S. Sinev, K. Koshelev, Z. Liu, A. Rudenko, K. Ladutenko, A.
Shcherbakov, Z. Sadrieva, M. Baranov, T. Itina, J. Liu, A. A.
Bogdanov, and Y. Kivshar, “Observation of ultrafast self-action effects
in quasi-BIC resonant metasurfaces,” Nano Lett. 21, 8848–8855
(2021).

19. E. A. A. Pogna, M. Celebrano, A. Mazzanti, L. Ghirardini, L. Carletti, G.
Marino, A. Schirato, D. Viola, P. Laporta, C. De Angelis, G. Leo, G.
Cerullo, M. Finazzi, and G. D. Valle, “Ultrafast, all optically reconfig-
urable, nonlinear nanoantenna,” ACS Nano 15, 11150–11157
(2021).

20. S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A.
Krasnok, and P. Belov, “Tuning of magnetic optical response in a
dielectric nanoparticle by ultrafast photoexcitation of dense elec-
tron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).

21. P. Xia, C. Kim, F. Lu, T. Kanai, H. Akiyama, J. Itatani, and N. Ishii,
“Nonlinear propagation effects in high harmonic generation in reflec-
tion and transmission from gallium arsenide,” Opt. Express 26,
29393–29400 (2018).

22. I. Kilen, M. Kolesik, J. Hader, J. V. Moloney, U. Huttner, M. K. Hagen,
and S. W. Koch, “Propagation induced dephasing in semiconductor
high-harmonic generation,” Phys. Rev. Lett. 125, 083901
(2020).

23. M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W.
Koch, M. Kira, and R. Huber, “Real-time observation of interfering
crystal electrons in high-harmonic generation,” Nature 523, 572–
575 (2015).

24. M. K. Hagen and S. W. Koch, “Probing intervalence band coupling via
high-harmonic generation in binary zinc-blende semiconductors,”
Phys. Status Solidi 15, 2100397 (2021).

25. U. Huttner, M. Kira, and S. W. Koch, “Ultrahigh off-resonant field
effects in semiconductors,” Laser Photon. Rev. 11, 1700049
(2017).

26. D. Matteo, J. Pigeon, S. Y. Tochitsky, U. Huttner, M. Kira, S. Koch, J.
Moloney, and C. Joshi, “Control of the nonlinear response of bulk
GaAs induced by long-wavelength infrared pulses,” Opt. Express
27, 30462–30472 (2019).

27. M. Hussain, F. Lima, W. Boutu, H. Merdji, M. Fajardo, and G. O.
Williams, “Demonstration of nonperturbative and perturbative third-
harmonic generation in MgO by altering the electronic structure,”
Phys. Rev. A 105, 053103 (2022).

28. W. Cartar, J. Mørk, and S. Hughes, “Self-consistent Maxwell-Bloch
model of quantum-dot photonic-crystal-cavity lasers,” Phys. Rev. A
96, 023859 (2017).

29. J. R. Gulley and D. Huang, “Self-consistent quantum-kinetic theory for
interplay between pulsed-laser excitation and nonlinear carrier
transport in a quantum-wire array,” Opt. Express 27, 17154–17185
(2019).

30. R. Buschlinger, M. Lorke, and U. Peschel, “Light-matter interaction
and lasing in semiconductor nanowires: a combined finite-difference
time-domain and semiconductor Bloch equation approach,” Phys.
Rev. B 91, 045203 (2015).

31. K. Ravi, Q. Wang, and S.-T. Ho, “A multi-band, multi-level, multi-
electron model for efficient FDTD simulations of electromagnetic inter-
actions with semiconductor quantum wells,” J. Mod. Opt. 62, 1158–
1182 (2015).

32. C. Jirauschek, M. Riesch, and P. Tzenov, “Optoelectronic device sim-
ulations based on macroscopic Maxwell–Bloch equations,” Adv.
Theor. Simul. 2, 1900018 (2019).

33. A. Rudenko, K. Ladutenko, S. Makarov, and T. E. Itina,
“Photogenerated free carrier-induced symmetry breaking in spherical
silicon nanoparticle,” Adv. Opt. Mater. 6, 1701153 (2018).

34. J.-K. An and K.-H. Kim, “Efficient non-perturbative high-harmonic gen-
eration from nonlinear metasurfaces with low pump intensity,” Opt.
Laser Technol. 135, 106702 (2021).

35. A. Rudenko, M. K. Hagen, J. Hader, M. Kolesik, S. W. Koch, and J. V.
Moloney, “Maxwell-semiconductor Bloch simulations of high-har-
monic generation in finite thickness semiconductor slabs,” Proc.
SPIE 11999, 119990A (2022).

36. A. Taflove and S. C. Hagness, Computational Electrodynamics: The
Finite-Difference Time-Domain Method, 2nd ed. (Artech House,
1995).

Research Article Vol. 10, No. 9 / September 2022 / Photonics Research 2105

https://doi.org/10.1016/j.mattod.2017.06.007
https://doi.org/10.1117/1.AP.1.2.024002
https://doi.org/10.1117/1.AP.1.2.024002
https://doi.org/10.1021/acsphotonics.1c01356
https://doi.org/10.1021/acsphotonics.1c01356
https://doi.org/10.1063/5.0048937
https://doi.org/10.1063/5.0048937
https://doi.org/10.1021/acsphotonics.6b00036
https://doi.org/10.1021/acs.nanolett.7b00392
https://doi.org/10.1021/acs.nanolett.6b01816
https://doi.org/10.1021/acs.nanolett.1c01975
https://doi.org/10.1021/acs.nanolett.1c01975
https://doi.org/10.29026/oea.2022.210093
https://doi.org/10.1038/s41567-018-0315-5
https://doi.org/10.1038/nphoton.2013.349
https://doi.org/10.1126/science.aan2395
https://doi.org/10.1126/science.aan2395
https://doi.org/10.1038/s41567-018-0233-6
https://doi.org/10.1038/s41567-018-0233-6
https://doi.org/10.1038/s41467-021-24450-9
https://doi.org/10.1021/acsphotonics.1c01511
https://doi.org/10.1038/s41467-017-00019-3
https://doi.org/10.1002/smsc.202000079
https://doi.org/10.1002/smsc.202000079
https://doi.org/10.1021/acs.nanolett.1c03257
https://doi.org/10.1021/acs.nanolett.1c03257
https://doi.org/10.1021/acsnano.1c03386
https://doi.org/10.1021/acsnano.1c03386
https://doi.org/10.1021/acs.nanolett.5b02534
https://doi.org/10.1364/OE.26.029393
https://doi.org/10.1364/OE.26.029393
https://doi.org/10.1103/PhysRevLett.125.083901
https://doi.org/10.1103/PhysRevLett.125.083901
https://doi.org/10.1038/nature14652
https://doi.org/10.1038/nature14652
https://doi.org/10.1002/pssr.202100397
https://doi.org/10.1002/lpor.201700049
https://doi.org/10.1002/lpor.201700049
https://doi.org/10.1364/OE.27.030462
https://doi.org/10.1364/OE.27.030462
https://doi.org/10.1103/PhysRevA.105.053103
https://doi.org/10.1103/PhysRevA.96.023859
https://doi.org/10.1103/PhysRevA.96.023859
https://doi.org/10.1364/OE.27.017154
https://doi.org/10.1364/OE.27.017154
https://doi.org/10.1103/PhysRevB.91.045203
https://doi.org/10.1103/PhysRevB.91.045203
https://doi.org/10.1080/09500340.2015.1024771
https://doi.org/10.1080/09500340.2015.1024771
https://doi.org/10.1002/adts.201900018
https://doi.org/10.1002/adts.201900018
https://doi.org/10.1002/adom.201701153
https://doi.org/10.1016/j.optlastec.2020.106702
https://doi.org/10.1016/j.optlastec.2020.106702
https://doi.org/10.1117/12.2625903
https://doi.org/10.1117/12.2625903


37. G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of
the liquid-metal–amorphous-semiconductor transition in germanium,”
Phys. Rev. B 49, 14251–14269 (1994).

38. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy cal-
culations for metals and semiconductors using a plane-wave basis
set,” Comput. Mater. Sci 6, 15–50 (1996).

39. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band
gaps and lattice parameters evaluated with the Heyd-Scuseria-
Ernzerhof screened hybrid functional,” J. Chem. Phys. 123, 174101
(2005).

40. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler
metallösungen,” Ann. Phys. 330, 377–445 (1908).

2106 Vol. 10, No. 9 / September 2022 / Photonics Research Research Article

https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1063/1.2085170
https://doi.org/10.1063/1.2085170
https://doi.org/10.1002/andp.19083300302

	XML ID funding
	XML ID funding

