• Laser & Optoelectronics Progress
  • Vol. 61, Issue 5, 0514003 (2024)
Yusen Shi1、3, Xue Pan1、*, Peng Zhang2, Qi Xiao1, Zuqiang Li1、3, Jiangfeng Wang1, Youen Jiang1, Wei Fan1, Xuechun Li1、**, and Jianqiang Zhu1
Author Affiliations
  • 1Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Zhangjiang Laboratory, Shanghai 201210, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP231134 Cite this Article Set citation alerts
    Yusen Shi, Xue Pan, Peng Zhang, Qi Xiao, Zuqiang Li, Jiangfeng Wang, Youen Jiang, Wei Fan, Xuechun Li, Jianqiang Zhu. Technologies of Thin-Disk Continuous Wave Laser Based on Optical Adhesive[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0514003 Copy Citation Text show less
    References

    [1] Giesen A, Hügel H, Voss A et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 58, 365-372(1994).

    [2] Chen F, Yu J H, Chen Y et al. 107 mJ Yb∶YAG single thin-disk regenerative amplifier[J]. Chinese Journal of Lasers, 50, 0515001(2023).

    [3] Hao J J, Liu H Y, Chen H S et al. Progress in Kerr-lens mode-locked thin disk laser oscillators[J]. Chinese Journal of Lasers, 49, 1201002(2022).

    [4] Nagel S, Metzger B, Bauer D et al. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality[J]. Optics Letters, 46, 965-968(2021).

    [5] Alabbadi A, Larionov M, Fink F. High-power Yb∶YAG thin-disk laser with 80% efficiency pumped at the zero-phonon line[J]. Optics Letters, 47, 202-205(2022).

    [6] Krötz P, Wandt C, Grebing C et al. Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C], ATh1A.8(2019).

    [7] Jung R, Tümmler J, Will I. Regenerative thin-disk amplifier for 300 mJ pulse energy[J]. Optics Express, 24, 883-887(2016).

    [8] Huang Y, Zhu X, Zhu G Z et al. A multi-pass pumping scheme for thin disk lasers with good anti-disturbance ability[J]. Optics Express, 23, 4605-4613(2015).

    [9] Wang H L, Dong J, Chen H T et al. Multi-pumping disc laser[P].

    [10] Li Z Y, Zou H, Zhu G Z et al. Dynamic compensation of fundamental mode of thin disk laser resonators based on a deformable mirror[J]. Acta Optica Sinica, 42, 0814002(2022).

    [11] Dong J, Chen H T, Wang H L et al. Research on picosecond laser regenerative amplifier based on thin-disk gain medium[J]. Acta Optica Sinica, 41, 1414003(2021).

    [12] Dong J, Chen H T, Wang H L et al. Theoretical and experimental research on 100 kHz cavity-dumped thin-disk laser[J]. Acta Optica Sinica, 42, 0914002(2022).

    [13] Liu R, Tan Y, Gong F Q et al. The application of porous foam structure cooling arrangement system for a thin disk laser[J]. Optik, 200, 163423(2020).

    [14] Liu R, Gong F Q, Li X et al. Research on heat transfer characteristics of porous foam heat sink for all solid state thin disk lasers[J]. Acta Photonica Sinica, 49, 0414002(2020).

    [15] Dai L H, Liu R, Li X A et al. High-efficiency, high-repetition-rate cavity-dumped Q-switched Yb: YAG thin-disk laser based on a 72-pass pump module[J]. Optics Express, 30, 19629-19638(2022).

    [16] Dai L H, Liu R et al. Resonators with a continuously variable output coupling rate to enhance output performance of Yb∶YAG thin-disk lasers[J]. Optics Express, 30, 40739-40749(2022).

    [17] Erhard S, Giesen A, Karszewski M et al. Novel pump design of Yb: YAG thin disc laser for operation at room temperature with improved efficiency[C], MC3(1999).

    [18] Chen H T, Dong J, Wang H L et al. A thin-disk multi-pass pump scheme with large laser aperture[J]. High Power Laser and Particle Beams, 34, 031004(2022).

    [19] Contag K, Karszewski M, Stewen C et al. Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb∶YAG laser[J]. Quantum Electronics, 29, 697-703(1999).

    [20] Li L, Niu J, Zhang C L et al. Thermal effect analysis of continuous LD end-pumped square YAG/Yb∶YAG composite crystal[J]. Laser & Optoelectronics Progress, 60, 0114001(2023).

    [21] Li L, Yang J H, Zhang C L et al. Thermal effect analysis of pulsed LD end-pumped YAG/Nd∶YAG composite crystal[J]. Laser & Optoelectronics Progress, 59, 2114001(2022).

    [22] Aleknavičius A, Gabalis M, Michailovas A et al. Aberrations induced by anti-ASE cap on thin-disk active element[J]. Optics Express, 21, 14530-14538(2013).

    [23] Tamer I, Keppler S, Hornung M et al. Spatio-temporal characterization of pump-induced wavefront aberrations in Yb3+-doped materials[J]. Laser & Photonics Reviews, 12, 1700211(2018).

    [24] Chi H, Baumgarten C M, Jankowska E et al. Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb∶YAG active mirror laser amplifier[J]. Journal of the Optical Society of America B, 36, 1084-1090(2019).

    [25] Chyla M, Nagisetty S S, Severova P et al. Time-resolved deformation measurement of Yb∶ YAG thin disk using wavefront sensor[J]. Proceedings of SPIE, 9343, 93431E(2015).

    [26] Lü B D[M]. Laser optics: beam characterization, propagation and transformation, resonator technology and physics, 318-322(2003).

    Yusen Shi, Xue Pan, Peng Zhang, Qi Xiao, Zuqiang Li, Jiangfeng Wang, Youen Jiang, Wei Fan, Xuechun Li, Jianqiang Zhu. Technologies of Thin-Disk Continuous Wave Laser Based on Optical Adhesive[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0514003
    Download Citation