• Laser & Optoelectronics Progress
  • Vol. 59, Issue 16, 1617003 (2022)
Shuanglu Zou, Wanrong Gao*, and Siyu Liu
Author Affiliations
  • School of Electronic and Optical Engineering, Nanjing University of Science & Technology, Nanjing 210094, Jiangsu , China
  • show less
    DOI: 10.3788/LOP202259.1617003 Cite this Article Set citation alerts
    Shuanglu Zou, Wanrong Gao, Siyu Liu. Effect of Relative Phase Delay Error of Quarter-Wave Plate on Measurement Accuracy of Birefringence Parameters in Polarization-Sensitive Full-Field Optical Coherence Tomography System[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1617003 Copy Citation Text show less

    Abstract

    Polarization-sensitive full-field optical coherence tomography (PS-FFOCT) system can produce the depth-resolved en face images of the birefringence and diattenuation of biological tissue samples. One of the important problems in the birefringence measurement of biological tissue using PS-FFOCT system is the analysis of the effects of relative phase delay error of quarter-wave plate on the measurement accuracy. A PS-FFOCT system was set up in this study. First, the Jones matrix model of the system was derived, and the effects of relative phase delay errors of quarter-wave plate on the measurement accuracy of birefringence were then analyzed. Finally, the results simulated using Matlab software were presented to reveal the specific behaviors. The research results can help the design of PS-FFOCT system and the accurate measurement of birefringence characteristics of biological tissues.
    II=I¯+AcosφcosϕI¯+Asinφcosϕ+2β
    ϕsam-ϕref¯=Ψsin(ωt+θ)
    II=I¯+Acosφcosϕ+Ψsin(ωt+θ)I¯+Asinφcosϕ+2β+Ψsin(ωt+θ)
    EkEk=(k-1)T/4kT/4I¯+Acosφcosϕ+Ψsin(ωt+θ)dt(k-1)T/4kT/4I¯+Asinφcosϕ+2β+Ψsin(ωt+θ)dt
    ΣS=-E1+E2+E3-E4=4T/πΓSAcosφsinϕΣC=-E1+E2-E3+E4=4T/πΓCAcosφcosϕΣS=-E1+E2+E3-E4=4T/πΓSAsinφsin(ϕ+2β)ΣC=-E1+E2-E3+E4=4T/πΓCAsinφcos(ϕ+2β)
    ΓS=n=0+(-1)nJ2n+1(Ψ)2n+1sin(2n+1)θΓC=n=0+J4n+2(Ψ)2n+1sin2(2n+1)θ
    tan2φ=(ΣS)2+(ΣC)2(ΣS)2+(ΣC)2
    S=(ΣS)2+(ΣC)2+(ΣS)2+(ΣC)2=4TπΓA2
    Δz=22ln2nπ×λ02Δλ
    Δz=0.5λ0NA
    E=Exx0+Eyy0=x0a1exp[i(α1-ωt)]+y0a2exp[i(α2-ωt)]
    Ex=a1exp[i(α1-ωt)]Ey=a2exp[i(α2-ωt)]
    Ex=a1exp(iα1)Ey=a2exp(iα2)
    E=ExEy=a1exp(iα1)a2exp(iα2)
    A1=g11A1+g12B1B2=g21A1+g22B1
    A2B2=g11g12g21g22A1B1
    Et=JEi
    J=g11g12g21g22
    Et=JNJ2J1Ei
    JS=1000
      JP=0001
    JQ=exp(iπ4)100-i
    Jθ=cosθsinθ-sinθcosθ
    J=QθJ-θJQJθ=exp(iπ4)cos2θ-isin2θcosθsinθ(1+i)cosθsinθ(1+i)sin2θ-icos2θ
    JQ45=221ii1
    JR=r1000
    JB=rexp-i(ϕB2)00exp+i(ϕB2)
    JBβ=r×cos2βexp-iϕB2+sin2βexp+iϕB2-isin2βsinϕB2-isin2βsinϕB2cos2βexp+iϕB2+sin2βexp-iϕB2
    JbsR=rbs1001
    JbsT=tbs1001
    Jref=JbsTJQθJJRJQθJbsR
    Jref=cos2θsin2θsin2θ-cos2θrbstbsrrefexpiφref
    JBβ=r×cos2βexp-iϕB2+sin2βexp+iϕB2-isin2βsinϕB2-isin2βsinϕB2cos2βexp+iϕB2+sin2βexp-iϕB2
    Jsam=JbsRJQθJSβJQθJbsT
    Jsam=i-sinϕeBxp2iβcosϕBcosϕBsinϕBexp-2iβtbsbbsrexpiφsam
    EP=I01
    Edet(P)=JPJref+JsamEP
    Edet(P)=I2-rrefcos2θexpiφref+irsamsinϕBexp-2iβexpiφsam
    Idet(P)=I4rref2cos22θ+rsam2sin2ϕB+2rrefrsamcos2θsinϕBsinφ-2β
    Edet(S)=I2rrefsin2θexpiφref+irsamcosϕBexpiφsam
    Idet(S)=I4rref2sin22θ+rsam2cos2ϕB-2rrefrsamsin2θcosϕBsinφ
    IdetP=I0P+APcosφsam-φref¯+BPsinφsam-φref¯
    IdetS=I0S+AScosφsam-φref¯+BSsinφsam-φref¯
    I0P=I4rrefcos2θ2+rsamsin ϕB2AP=I2rrefrsamcos2θsinϕBsinϕz-2βBP=I2rrefrsamcos2θsinϕBcosϕz-2βI0S=I4rrefsin2θ2+rsamcos ϕB2AS=-I2rrefrsamsin2θcosϕBsinϕzBS=-I2rrefrsamsin2θcosϕBcosϕz
    tan2ϕBtan22θ=AP2+BP2AS2+BS2
    tanϕz=ASBS
    tan2β=ASBP-APBSBSBP+ASAP
    JQ=expiπ4100iexp-iδ
    JQθδJ-θJQJθ=expiπ4cos2θ-isin2θexp-iδsinθcosθ1+iexp-iδsinθcosθ1+iexp-iδsin2θ-icos2θexp-iδ
    Jref=JbsTJQθJJRJQθ JbsR
    Jref=cos2θ-sin2θexp-2iδsinθcosθ1+exp-2iδsinθcosθ1+exp-2iδsin2θ-cos2θexp-2iδrbstbsrrefexpiφref
    Jsam=JbsR JQθ JSβJQθ JbsT
    Jsam=i-sinϕBcos2β-isin ϕBsin2βexp-iδcosϕBcosϕBsinϕBcos2β-isin ϕBsin2βexp-iδrbstbsrexpiφsam
    EP=I01
    Edet(P)=JPJref+JsamEP
    Edet(P)=I2isin ϕBcos2β-isin 2βexp-iδrsamexpiφsam+I2sin2θ-cos2θexp-2iδrrefexpiφref
    Idet(P)=I4sin2ϕBcos2β-isin 2βexp-iδ2rsam2+cos2θexp-2iδ-sin2θ2rref2+2sin ϕBrsamrrefcos2θsinφ-2β-I42sin ϕBrsamrref{cos2θ1-exp-2iδ×cos2β-isin 2βexp-iδ-isin 2βcos2θ1-exp-iδsinφ
    Edet(S)=I2rrefsinθcosθ1+exp-2iδexpiφref+irsamcosϕBexpiφsam
    Idet(S)=I4sinθcosθ1+exp-2iδ2rref2+cos2ϕBrsam2-2rrefrsamsin2θcosϕBsinφ+I42rrefrsamcosϕBsinθcosθ1-exp-2iδsinφ
    Idet(P)=I0(P)+A(P)cosφsam-φref¯+B(P)sinφsam-φref¯+I2sinϕBrsamrrefcos2θ1-exp-2iδ×cos2β-isin 2βexp-iδ-isin 2βcos2θ1-exp-iδ×cosφsam-φref¯sinϕz+sinφsam-φref¯cosϕz
    Idet(S)=I0(S)+A(S)cosφsam-φref¯+B(S)sinφsam-φref¯+I2rrefrsamcosϕBsinθcosθ1-exp-2iδ×cosφsam-φref¯sinϕz+sinφsam-φref¯cosϕz
    Idet(P)=I0(P)+A(P)cosφsam-φref¯+B(P)sinφsam-φref¯+C(P)cosφsam-φref¯+D(P)sinφsam-φref¯
    Idet(S)=I0(S)+A(S)cosφsam-φref¯+B(S)sinφsam-φref¯+C(S)cosφsam-φref¯+D(S)sinφsam-φref¯
    I0(P)=I4rrefsin2θ-cos2θexp-2iδ2+rssamin ϕBcos2β-isin 2βexp-iδ2A(P)=I2rrefrsamcos2θsinϕBsinϕz-2βB(P)=I2rrefrsamcos2θsinϕBcosϕz-2βC(P)=-I2sinϕBrsamrrefcos2θ1-exp(-2iδ)×cos2β-isin 2βexp(-iδ)-I2isin 2βcos2θ1-exp-iδsinϕzD(P)=-I2sinϕBrsamrrefcos2θ1-exp(-2iδ)×cos2β-isin 2βexp(-iδ)-I2isin 2βcos2θ1-exp-iδcosϕz
    I0(S)=I4sinθcosθ1+exp(-2iδ)rref2+cosϕBrsam2A(S)=-I2rrefrsamsin2θcosϕBsinϕzB(S)=-I2rrefrsamsin2θcosϕBcosϕzC(S)=I2rrefrsamcosϕBsinθcosθ1-exp-2iδsinϕzD(S)=I2rrefrsamcosϕBsinθcosθ1-exp-2iδcosϕz
    tan2ϕBtan2(2θ)=A(P)+C(P)2+B(P)+D(P)2A(S)+C(S)2+B(S)+D(S)2
    tanϕz=A(S)+C(S)B(S)+D(S)
    tan(2β)=A(S)+C(S)B(P)+D(P)-A(P)+C(P)B(S)+D(S)B(S)+D(S)B(P)+D(P)+A(S)+C(S)A(P)+C(P)
    Shuanglu Zou, Wanrong Gao, Siyu Liu. Effect of Relative Phase Delay Error of Quarter-Wave Plate on Measurement Accuracy of Birefringence Parameters in Polarization-Sensitive Full-Field Optical Coherence Tomography System[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1617003
    Download Citation