• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 5, 617 (2021)
Bo FANG1、2、*, Weixiong ZHAO1, Na’na YANG1、2, Chunhui WANG1、3, Hao ZHOU1、2, and Weijun ZHANG1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.05.006 Cite this Article
    FANG Bo, ZHAO Weixiong, YANG Na’na, WANG Chunhui, ZHOU Hao, ZHANG Weijun. Development and application of optical multi-pass cells[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 617 Copy Citation Text show less
    References

    [1] Chen W, Yi H, Wu T, et al. Photonic Sensing of Reactive Atmospheric Species in: Meyers R. A(Eds.), Encyclopedia of Analytical Chemistry [M]. Hoboken: John Wiley & Sons Ltd Publication, 2017.

    [2] Shemshad J, Aminossadati S M, Kizil M S. A review of developments in near infrared methane detection based on tunable diode laser [J]. Sensors and Actuators B: Chemical, 2012, 171(172): 77-92.

    [3] Hodgkinson J, Tatam R P. Optical gas sensing: A review [J]. Measurement Science and Technology, 2013, 24(1): 012004.

    [4] Kan R F, Liu W Q, Zhang Y J, et al. Absorption measurements of ambient methane with tunable diode laser [J]. Acta Physica Sinica, 2005, 54(4): 1927-1930.

    [5] Graf M, Emmenegger L, Tuzson B. Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy [J]. Optics Letters, 2018, 43(11): 2434-2437.

    [6] Manninen A, Tuzson B, Looser H, et al. Versatile multipass cell for laser spectroscopic trace gas analysis [J]. Applied Physics B, 2012, 109(3): 461-466.

    [7] Tuzson B, Mangold M, Looser H, et al. Compact multipass optical cell for laser spectroscopy [J]. Optics Letters, 2013, 38(3): 257-259.

    [8] Mangold M, Tuzson B, Hundt M, et al. Circular paraboloid reflection cell for laser spectroscopic trace gas analysis [J]. Journal of the Optical Society of America A, 2016, 33(5): 913-919.

    [9] Tang Y Y, Liu W Q, Kan R F, et al. Measurements of NO and CO in Shanghai urban atmosphere by using quantum cascade lasers [J]. Optics Express, 2011, 19(21): 20224-20232.

    [10] Fried A, Henry B, Wert B, et al. Laboratory, ground-based, and airborne tunable diode laser systems: Performance characteristics and applications in atmospheric studies [J]. Applied Physics B, 1998, 67(3): 317-330.

    [11] Wert B P, Fried A, Rauenbuehler S, et al. Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D12): 4350.

    [12] Stepanov E V, Zyrianov P V, Miliaev V A. Single-breath NO detection with tunable diode lasers for pulmonary disease diagnosis [J]. Proceedings of SPIE, 1999, 3829: 103-109.

    [13] Namjou K, Roller C B, Reich T E, et al. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy [J]. Applied Physics B, 2006, 85(2/3): 427-435.

    [14] Khring M, Huang S, Jahjah M, et al. QCL-based TDLAS sensor for detection of NO toward emission measurements from ovarian cancer cells [J]. Applied Physics B, 2014, 117(1): 445-451.

    [15] Tarsitano C G, Webster C R. Multilaser Herriott cell for planetary tunable laser spectrometers [J]. Applied Optics, 2007, 46(28): 6923-6935.

    [16] Webster C R, Mahaffy P R. Determing the local abundance of Martian methane and its’ 13C/12C and D/H isotopic ratios for comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission [J]. Planetary and Space Science, 2011, 59(2-3): 271-283.

    [17] Mahaffy P R, Webster C R, Cabane M. The sample analysis at Mars investigation and instrument suite [J]. Space Science Reviews, 2012, 170: 401-478.

    [18] Webster C R, Mahaffy P R, Atreya S K, et al. Mars methane detection and variability at Gale crater [J]. Science, 2015, 347(6220): 415-417.

    [19] Zhang L F, Wang F, Yu L B, et al. The research for trace ammonia escape monitoring system based on tunable diode laser absorption spectroscopy [J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1639-1642.

    [20] Hui A O, Fradet M, Okumura M, et al. Temperature dependence study of the kinetics and product yields of the HO2+CH3C(O)O2 reaction by direct detection of OH and HO2 radicals using 2f-IR wavelength modulation spectroscopy [J]. The Journal of Physical Chemistry A, 2019, 123(17): 3655-3671.

    [21] White J U. Long optical paths of large aperture [J]. Journal of the Optical Society of America, 1942, 32(5): 285-288.

    [22] Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers [J]. Applied Optics, 1964, 3(4): 523-526.

    [23] McManus J B, Kebabian P L, Zahniser M S. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy [J]. Applied Optics, 1995, 34(18): 3336-3348.

    [24] So S, Thomazy D. Novel spherical mirror multipass cells with improved spot pattern density for gas sensing [C]. Conference on Laser and Electro-Optics, 2012, CW3B.6.

    [25] Chernin S M, Barskaya E G. Optical multipass matrix systems [J]. Applied Optics, 1991, 30(1): 51-58.

    [26] Tuzson B, Graf M, Ravelid J, et al. A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones [J]. Atmospheric Measurement Techniques, 2020, 13(9): 4715-4726.

    [27] Zou M L, Yang Z, Sun L Q, et al. Acetylene sensing system based on wavelength modulation spectroscopy using a triple-row circular multi-pass cell [J]. Optics Express, 2020, 28(8): 11573-11582.

    [28] Cui R Y, Dong L, Wu H P, et al. Three-dimensional printed miniature fiber-coupled multipass cells with dense spot patterns for ppb-level methane detection using a near-IR diode laser [J]. Analytical Chemistry, 2020, 92(19): 13034-13041.

    [29] Feng S, Qiu X, Guo G, et al. Palm-sized laser spectrometer with high robustness and sensitivity for trace gas detection using a novel double-layer toroidal cell [J]. Analytical Chemistry, 2021, 93(10): 4552-4558.

    [30] Webster C R, Flesch G J, Briggs R M, et al. Herriott cell spot imaging increases the performance of tunable laser spectrometers [J]. Applied Optics, 2021, 60(7): 1958-1965.

    [31] McManus J B. Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy [J]. Applied Optics, 2007, 46(4): 472-482.

    [32] Cui R Y, Dong L, Wu H P, et al. Calculation model of dense spot pattern multi-pass cells based on a spherical mirror aberration [J]. Optics Letters, 2019, 44(5): 1108-1111.

    [33] Cui R Y, Dong L, Wu H P, et al. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns [J]. Applied Physics Letters, 2020, 116(9): 091103.

    [34] Chernin S M. Promising version of the three-objective multipass matrix system [J]. Optics Express, 2002, 10(2): 104-107.

    [35] Silver J A. Simple dense-pattern optical multipass cells [J]. Applied Optics, 2005, 44(31): 6545-6556.

    [36] Wei N, Fang B, Zhao W, et al. Time-resolved laser-flash photolysis Faraday rotation spectrometer: A new tool for total OH reactivity measurement and free radical kinetics research [J]. Analytical Chemistry, 2020, 92(6): 4334-4339.

    [37] Wei N N, Zhao W X, Fang B, et al. Kinetic studies of reaction between OH radical and alkanes [J]. Chinese Journal of Analytical Chemistry, 2020, 48(8): 1050-1057.

    [38] Wang L, Deng L H, Li B, et al. Low-pressure OH radicals reactor generated by dielectric barrier discharge from water vapor [J]. Physics of Plasmas, 2020, 27(6): 060701.

    [39] McManus J B, Zahniser M S, Nelson D D. Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number [J]. Applied Optics, 2011, 50(4): A74-A85.

    [40] Fang B, Yang N N, Zhao W X, et al. Improved spherical mirror multipass-cell-based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels [J]. Applied Optics, 2019, 58(32): 8743-8750.

    [41] Glowacki D R, Goddard A, Seakins P W. Design and performance of a throughput-matched, zero-geometric-loss, modified three objective multipass matrix system for FTIR spectrometry [J]. Applied Optics, 2007, 46(32): 7872-7883.

    [42] Glowacki D R, Goddard A, Hemavibool K, et al. Design of and initial results from a highly instrumentedreactor for atmospheric chemistry (HIRAC) [J]. Atmospheric Chemistry and Physics, 2007, 7(20): 5371-5390.

    [43] Kwabia Tchana F, Willaert F, Landsheere X, et al. A new, low temperature long-pass cell for mid-infrared to terahertz spectroscopy and synchrotron radiation use [J]. Review of Scientific Instruments, 2013, 84(9): 093101.

    [44] Yang X B, Zhao W X, Tao L, et al. Measurement of volatile organic compounds in the smog chamber using a Chernin multipass cell [J]. Acta Physica Sinica, 2010, 59(7): 5154-5162.

    [45] Cheng Y, Zhao W X, Hu C J, et al. Experimental study of the photochemical reaction in the smog chamber using a Chernin multipass cell [J]. Acta Optica Sinica, 2013, 33(8): 295-302.

    [46] Zhao W, Fang B, Lin X, et al. Superconducting-magnet-based Faraday rotation spectrometer for real time in situ measurement of OH radicals at 106 molecule/cm3 level in an atmospheric simulation chamber [J]. Analytical Chemistry, 2018, 90(6): 3958-3964.

    [47] Fang B, Yang N N, Wang C H, et al. Detection of nitric oxide with Faraday rotation spectroscopy at 5.33 μm [J]. Chinese Journal of Chemical Physics, 2020, 33(1): 37-42.

    [48] Cuisset A, Hindle F, Mouret G, et al. Terahertz rotational spectroscopy of greenhouse gases using long interaction path-lengths [J]. Applied Sciences, 2021, 11(3): 1229.

    [49] Luo P L. Long-wave mid-infrared time-resolved dual-comb spectroscopy of short-lived intermediates [J]. Optics Letters, 2020, 45(24): 6791-6794.

    [50] Luo P L, Horng E C. Simultaneous determination of transient free radicals and reaction kinetics by high-resolution time-resolved dual-comb spectroscopy [J]. Communications Chemistry, 2020, 3: 95.

    FANG Bo, ZHAO Weixiong, YANG Na’na, WANG Chunhui, ZHOU Hao, ZHANG Weijun. Development and application of optical multi-pass cells[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 617
    Download Citation