• Acta Optica Sinica
  • Vol. 39, Issue 10, 1005001 (2019)
Yuefei Chen1, Wenrui Xue1、*, Chen Zhao1, Chen Zhang1, and Changyong Li2、3
Author Affiliations
  • 1School of Physics and Electronic Engineering, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2State Key Laboratory of Quantum Optics and Photonic Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/AOS201939.1005001 Cite this Article Set citation alerts
    Yuefei Chen, Wenrui Xue, Chen Zhao, Chen Zhang, Changyong Li. Grating-Type Mid-Infrared Absorber Based on Hexagonal Boron Nitride Material[J]. Acta Optica Sinica, 2019, 39(10): 1005001 Copy Citation Text show less
    References

    [1] Liao Y L, Zhao Y. Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber[J]. Optics Express, 25, 32080-32089(2017). http://europepmc.org/abstract/MED/29245873

    [2] Huang Y Q, Li Y, Li Z P et al. Tunable mid-infrared broadband absorber based on W/VO2 square nano-pillar array[J]. Acta Optica Sinica, 39, 0316001(2019).

    [3] Zhu L, Wang Y, Xiong G et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber[J]. Acta Optica Sinica, 37, 0923001(2017).

    [4] Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010). http://www.ncbi.nlm.nih.gov/pubmed/20560590

    [5] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006). http://www.jstor.org/stable/20032781

    [6] Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443-1447(2012). http://pubs.acs.org/doi/pdf/10.1021/nl204118h

    [7] Chen B, Li Q, Ghosh P et al. Tunable mid-infrared absorption of metamaterial integrated with graphene[J]. Journal of Physics: Conference Series, 844, 012037(2017). http://adsabs.harvard.edu/abs/2017JPhCS.844a2037C

    [8] Huang L, Hu G H, Deng C Y et al. Realization of mid-infrared broadband absorption in monolayer graphene based on strong coupling between graphene nanoribbons and metal tapered grooves[J]. Optics Express, 26, 29192-29202(2018). http://www.onacademic.com/detail/journal_1000040906933010_e651.html

    [9] Cao S, Wang T S, Sun Q et al. Graphene-silver hybrid metamaterial for tunable and high absorption at mid-infrared waveband[J]. IEEE Photonics Technology Letters, 30, 475-478(2018). http://ieeexplore.ieee.org/document/8278195/

    [10] Kumar A, Low T, Fung K H et al. Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system[J]. Nano Letters, 15, 3172-3180(2015). http://meetings.aps.org/Meeting/NES15/Session/D3.1

    [11] Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film[J]. Optics Express, 16, 11328-11336(2008). http://www.ncbi.nlm.nih.gov/pubmed/18648451

    [12] Baranov D G, Edgar J H, Hoffman T et al. Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal[J]. Physical Review B, 92, 201405(2015).

    [13] Wu J P, Jiang L Y, Guo J et al. Tunable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal[J]. Optics Express, 24, 17103-17114(2016). http://europepmc.org/abstract/med/27464161

    [14] Zhao B, Zhang Z M. Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures[J]. International Journal of Heat and Mass Transfer, 106, 1025-1034(2017). http://www.sciencedirect.com/science/article/pii/S0017931016318257

    [15] Kan Y H, Zhao C Y, Zhang Z M. Compact mid-infrared broadband absorber based on hBN/metal metasurface[J]. International Journal of Thermal Sciences, 130, 192-199(2018). http://www.sciencedirect.com/science/article/pii/S1290072918301042

    [16] Chen X, Xue W R, Zhao C et al. Ultra-broadband infrared absorber based on LiF and NaF[J]. Acta Optica Sinica, 38, 0123002(2018).

    [17] Shu S W, Li Z, Li Y Y. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime[J]. Optics Express, 21, 25307-25315(2013). http://www.ncbi.nlm.nih.gov/pubmed/24150371

    [18] Ding F, Cui Y X, Ge X C et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 100, 103506(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6168077

    [19] Korobkin D, Urzhumov Y, Shvets G. Enhanced near-field resolution in midinfrared using metamaterials[J]. Journal of the Optical Society of America B, 23, 468-478(2006). http://www.opticsinfobase.org/abstract.cfm?URI=JOSAB-23-3-468

    [20] Jacob Z. Hyperbolic phonon-polaritons[J]. Nature Materials, 13, 1081-1083(2014).

    [21] Dai S, Ma Q, Liu M K et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J]. Nature Nanotechnology, 10, 682-686(2015). http://www.nature.com/nnano/journal/v10/n8/nnano.2015.131/metrics

    [22] Adachi S, Sadao Adachi[M]. 半导体物理性能手册: 第2卷: 上册, 43-47(2014).

         [M]. Handbook on physical properties of semiconductors: volume 2: part 1, 43-47(2014).

    Yuefei Chen, Wenrui Xue, Chen Zhao, Chen Zhang, Changyong Li. Grating-Type Mid-Infrared Absorber Based on Hexagonal Boron Nitride Material[J]. Acta Optica Sinica, 2019, 39(10): 1005001
    Download Citation