• Photonic Sensors
  • Vol. 10, Issue 4, 340 (2020)
Sarika PAL1, Alka VERMA2、*, Y. K. PRAJAPATI3, and J. P. SAINI4
Author Affiliations
  • 1Department of ECE, National Institute of Technology Uttarakhand, Srinagar, Garhwal 246174, India
  • 2Department of ECE, Institute of Engineering and Rural Technology, Allahabad, Prayagraj, Uttar Pradesh 211002, India
  • 3Department of ECE, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
  • 4Department of ECE, Netaji Subhas University of Technology (NSUT), New Delhi 110078, India
  • show less
    DOI: 10.1007/s13320-020-0583-4 Cite this Article
    Sarika PAL, Alka VERMA, Y. K. PRAJAPATI, J. P. SAINI. Figure of Merit Enhancement of Surface Plasmon Resonance Biosensor Using Ga-Doped Zinc Oxide in Near Infrared Range[J]. Photonic Sensors, 2020, 10(4): 340 Copy Citation Text show less
    References

    [1] J. B. Maurya, Y. K. Prajapati, S. Raikwar, and J. P. Saini, “A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas,” Optik, 2018, 160: 428–433.

    [2] J. Hamola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews, 2008, 108(2): 462–493.

    [3] S. Pal, A. Verma, J. P. Saini, and Y. K. Prajapati, “Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor,” IET Optoelectronics, 2019, 13(4): 196–201.

    [4] J. Homola, Surface plasmon resonance based sensors. Springer series on chemical sensors and biosensors, vol. 4. Berlin: Springer-Verlag Berlin Heidelberg, 2006: 45–67.

    [5] S. Pal, A. Verma, Y. K. Prajapati, and J. P. Saini, “Influence of black phosphorous on performance of surface plasmon resonance biosensor,” Optical and Quantum Electronics, 2017, 49: 403.

    [6] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials”, Laser & Photonics Reviews, 2010, 4(6): 795–808.

    [7] A. K Pandey, A. K. Sharma, and R. Basu, “Fluoride glass-based surface plasmon sensor in infrared region: performance evaluation,” Journal of Physics D: Applied Physics, 2017, 50(18): 185103-1–185103-10.

    [8] B. Ruan, Q. You, J. Zhu, L. Wu, J. Guo, X. Dai, et al., “Improving the performance of an SPR biosensor using long-range surface plasmon of Ga-doped zinc oxide,” Sensors, 2018, 18(7): 2098.

    [9] J. Kim, G. V. Naik, N. K. Emami, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxides films,” IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4601907.

    [10] G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Optical Materials Express, 2011, 1(6): 1090–1099.

    [11] R. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sensors and Actuators B: Chemical, 2007, 123(1): 10–12.

    [12] A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Analytical Chemistry, 2005, 77(13): 3904–3907.

    [13] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Physical Review Letters, 1981, 47(26): 1927–1930.

    [14] B. Song, D. Li, W. P. Qi, M. Elstner, C. H. Fan, and H. P. Fang, “Graphene on Au (111): a highly conductive material with excellent absorption properties for high-solution bio/nanodetection and identification,” ChemPhysChem, 2010, 11(3): 585–589.

    [15] S. Pal, A. Verma, S. Raikwar, and J. P. Saini, “Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor,” Applied Physics A, 2018, 124(5): 394.

    [16] A. Verma, A. Prakash, and R. Tripathi, “Comparative study of surface plasmon resonance biosensor based on metamaterial and graphene,” Silicon, 2017, 9(3): 309–320.

    [17] L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, et al., “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sensors and Actuators B: Chemical, 2017, 249: 542–548.

    [18] W. C. Tan, M. Hofmann, Y. Hsieh, M. L. Lu, and Y. F. Chen, “A graphene-based surface plasmon sensor,” Nano Research, 2012, 5(10): 695–702.

    [19] X. Zhao, T. Huang, P. S. Ping, X. Wu, P. Huang, J. Pan, et al., “Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure,” Sensors, 2018, 18(7): 2056.

    [20] S. Chen and C. Lin, “Sensitivity comparison of graphene-based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region,” Materials Research Express, 2019, 6(5): 056503-1–056503-8.

    [21] L. Liu, M. Wang, L. Jiao, T. Wu, F. Xia, M. Liu, et al., “Sensitivity enhancement of a graphene–barium titanate-based surface plasmon resonance biosensor with an Ag–Au bimetallic structure in the visible region,” Journal of the Optical Society of America B, 2019, 36(4): 1108–1116.

    [22] M. B. Hossain, T. Tasnim, L. F. Abdulrazak, M. M. Rana, and M. R. Islam, “A numerical approach to design the kretschmann configuration based refractive index graphene-MoS2 hybrid layers with TiO2-SiO2 nano for formalin detection,” Photonic Sensors, 2020, 10(2): 134-146.

    [23] Y. K. Prajapati, S. Pal, and J. P. Saini, “Effect of metamaterial and silicon layers on performance of surface plasmon resonance biosensor in infrared range,” Silicon, 10(4): 1451–1460.

    [24] J. B. Maurya, Y. K. Prajapati, and R. Tripathi, “Effect of molybdenum disulfide layer on surface plasmon resonance biosensor for the detection of bacteria,” Silicon, 2018, 10(2): 245–256.

    Sarika PAL, Alka VERMA, Y. K. PRAJAPATI, J. P. SAINI. Figure of Merit Enhancement of Surface Plasmon Resonance Biosensor Using Ga-Doped Zinc Oxide in Near Infrared Range[J]. Photonic Sensors, 2020, 10(4): 340
    Download Citation