• Chinese Optics Letters
  • Vol. 19, Issue 11, 111401 (2021)
Chunguang Ma1、2, Jiliang Wu1、2, Jinlong Xiao1、2, Yongtao Huang1、2, Yali Li1、2, Yuede Yang1、2、*, and Yongzhen Huang1、2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202119.111401 Cite this Article Set citation alerts
    Chunguang Ma, Jiliang Wu, Jinlong Xiao, Yongtao Huang, Yali Li, Yuede Yang, Yongzhen Huang. Wideband chaos generation based on a dual-mode microsquare laser with optical feedback[J]. Chinese Optics Letters, 2021, 19(11): 111401 Copy Citation Text show less
    References

    [1] M. Sciamanna, K. A. Shore. Physics and applications of laser diode chaos. Nat. Photon., 9, 151(2015).

    [2] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photon., 2, 728(2008).

    [3] P. Li, Y. Guo, Y. Guo, Y. Fan, X. Guo, X. Liu, K. Li, K. A. Shore, Y. Wang, A. Wang. Ultrafast fully photonic random bit generator. J. Lightwave Technol., 36, 2531(2018).

    [4] M. Li, Y. Chen, Y. Song, C. Zeng, X. Zhang. DOE effect on BER performance in MSK space uplink chaotic optical communication. Chin. Opt. Lett., 18, 070601(2020).

    [5] J. Ke, L. Yi, G. Xia, W. Hu. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate. Opt. Lett., 43, 1323(2018).

    [6] X. Wang, S. Li, X. Jiang, J. Hu, M. Xue, S. Xu, S. Pan. High-accuracy optical time delay measurement in fiber link. Chin. Opt. Lett., 17, 060601(2019).

    [7] Z. Hu, B. Wang, L. Wang, T. Zhao, H. Han, Y. Wang, A. Wang. Improving spatial resolution of chaos OTDR using significant-bit correlation detection. IEEE Photon. Technol. Lett., 31, 1029(2019).

    [8] F. Y. Lin, J. M. Liu. Chaotic lidar. IEEE J. Sel. Top. Quantum Electron., 10, 991(2004).

    [9] Y. Xiao, T. Deng, Z.-M. Wu, J.-G. Wu, X.-D. Lin, X. Tang, L.-B. Zeng, G.-Q. Xia. Chaos synchronization between arbitrary two response VCSELs in a broadband chaos network driven by a bandwidth-enhanced chaotic signal. Opt. Commun., 285, 1442(2012).

    [10] I. Reidler, Y. Aviad, M. Rosenbluh, I. Kanter. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett., 103, 024102(2009).

    [11] I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh. An optical ultrafast random bit generator. Nat. Photon., 4, 58(2010).

    [12] K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, P. Davis. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Opt. Express, 18, 5512(2010).

    [13] Y. Wang, Z. Jia, Z. Gao, J. Xiao, L. Wang, Y. Wang, Y. Huang, A. Wang. Generation of laser chaos with wide-band flat power spectrum in a circular-side hexagonal resonator microlaser with optical feedback. Opt. Express, 28, 18507(2020).

    [14] R. Sakuraba, K. Iwakawa, K. Kanno, A. Uchida. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express, 23, 1470(2015).

    [15] L. Qiao, T. Lv, Y. Xu, M. Zhang, J. Zhang, T. Wang, R. Zhou, Q. Wang, H. Xu. Generation of flat wideband chaos based on mutual injection of semiconductor lasers. Opt. Lett., 44, 5394(2019).

    [16] B. Pan, D. Lu, L. Zhao. Broadband chaos generation using monolithic dual-mode laser with optical feedback. IEEE Photon. Technol. Lett., 27, 2516(2015).

    [17] Q. Yang, L. Qiao, M. Zhang, J. Zhang, T. Wang, S. Gao, M. Chai, P. M. Mohiuddin. Generation of a broadband chaotic laser by active optical feedback loop combined with a high nonlinear fiber. Opt. Lett., 45, 1750(2020).

    [18] H. Long, Y.-Z. Huang, X.-W. Ma, Y.-D. Yang, J.-L. Xiao, L.-X. Zou, B.-W. Liu. Dual-transverse-mode microsquare lasers with tunable wavelength interval. Opt. Lett., 40, 3548(2015).

    [19] Y.-D. Yang, Y.-Z. Huang. Mode characteristics and directional emission for square microcavity lasers. J. Phys. D, 49, 253001(2016).

    [20] H.-Z. Weng, Y.-Z. Huang, X.-W. Ma, F.-L. Wang, M.-L. Liao, Y.-D. Yang, J.-L. Xiao. Spectral linewidth analysis for square microlasers. IEEE Photon. Technol. Lett., 29, 1931(2017).

    [21] H.-Z. Weng, Y.-D. Yang, J.-L. Wu, Y.-Z. Hao, M. Tang, J.-L. Xiao, Y.-Z. Huang. Dual-mode microcavity semiconductor lasers. IEEE J. Sel. Top. Quantum Electron., 25, 1501408(2019).

    [22] H. Someya, I. Oowada, H. Okumura, T. Kida, A. Uchida. Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection. Opt. Express, 17, 19536(2009).

    [23] R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, P. Davis. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation. Opt. Express, 22, 11727(2014).

    [24] B. Tromborg, H. Olesen, X. Pan, S. Saito. Transmission line description of optical feedback and injection locking for Fabry–Perot and DFB lasers. IEEE J. Sel. Top. Quantum Electron., 23, 1875(1987).

    [25] F.-Y. Lin, Y.-K. Chao, T.-C. Wu. Effective bandwidths of broadband chaotic signals. IEEE. J. Quantum Electron., 48, 1010(2012).

    [26] P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, Y. Wang. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 27, 17859(2019).

    Data from CrossRef

    [1] Ya-Li Li, Chun-Guang Ma, Jin-Long Xiao, Ting Wang, Ji-Liang Wu, Yue-De Yang, Yong-Zhen Huang. Wideband chaotic tri-mode microlasers with optical feedback. Optics Express, 30, 2122(2022).

    Chunguang Ma, Jiliang Wu, Jinlong Xiao, Yongtao Huang, Yali Li, Yuede Yang, Yongzhen Huang. Wideband chaos generation based on a dual-mode microsquare laser with optical feedback[J]. Chinese Optics Letters, 2021, 19(11): 111401
    Download Citation