• Advanced Photonics
  • Vol. 7, Issue 3, 036004 (2025)
Hooman Barati Sedeh1, Renee C. George1, Fangxing Lai2, Hao Li2..., Wenhao Li1, Yuruo Zheng1, Dmitrii Tstekov1, Jiannan Gao1, Austin Moore3, Jesse Frantz3, Jingbo Sun4, Shumin Xiao2 and Natalia M. Litchinitser1,*|Show fewer author(s)
Author Affiliations
  • 1Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
  • 2Harbin Institute of Technology Shenzhen, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen, China
  • 3Naval Research Laboratory, Washington, District of Columbia, United States
  • 4Tsinghua University, School of Materials Science and Engineering, Beijing, China
  • show less
    DOI: 10.1117/1.AP.7.3.036004 Cite this Article Set citation alerts
    Hooman Barati Sedeh, Renee C. George, Fangxing Lai, Hao Li, Wenhao Li, Yuruo Zheng, Dmitrii Tstekov, Jiannan Gao, Austin Moore, Jesse Frantz, Jingbo Sun, Shumin Xiao, Natalia M. Litchinitser, "Toward the meta-atom library: experimental validation of machine learning-based Mie-tronics," Adv. Photon. 7, 036004 (2025) Copy Citation Text show less
    References

    [1] W. Ma et al. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77-90(2021). https://doi.org/10.1038/s41566-020-0685-y

    [2] G. Wetzstein et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020). https://doi.org/10.1038/s41586-020-2973-6

    [3] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018). https://doi.org/10.1038/s41566-018-0246-9

    [4] W. Ji et al. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light: Sci. Appl., 12, 169(2023). https://doi.org/10.1038/s41377-023-01218-y

    [5] O. Khatib et al. Deep learning the electromagnetic properties of metamaterials—a comprehensive review. Adv. Funct. Mater., 31, 2101748(2021). https://doi.org/10.1002/adfm.202101748

    [6] R. Won. Into the ‘Mie-tronic’era. Nat. Photonics, 13, 585-587(2019). https://doi.org/10.1038/s41566-019-0512-5

    [7] Y. Kivshar. The rise of Mie-tronics. Nano Lett., 22, 3513-3515(2022). https://doi.org/10.1021/acs.nanolett.2c00548

    [8] P. R. Wiecha et al. Deep learning in nano-photonics: inverse design and beyond. Photonics Res., 9, B182-B200(2021). https://doi.org/10.1364/PRJ.415960

    [9] I. Staude, J. Schilling. Metamaterial-inspired silicon nanophotonics. Nat. Photonics, 11, 274-284(2017). https://doi.org/10.1038/nphoton.2017.39

    [10] H. Barati Sedeh, N. M. Litchinitser. Singular optics empowered by engineered optical materials. Nanophotonics, 12, 2687-2716(2023). https://doi.org/10.1515/nanoph-2023-0030

    [11] P. R. Wiecha, O. L. Muskens. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett., 20, 329-338(2019). https://doi.org/10.1021/acs.nanolett.9b03971

    [12] Z. Cao et al. A hybrid approach using machine learning and genetic algorithm to inverse modeling for single sphere scattering in a Gaussian light sheet. J. Quant. Spectrosc. Radiat. Transf., 235, 180-186(2019). https://doi.org/10.1016/j.jqsrt.2019.07.002

    [13] C. Qiu et al. Nanophotonic inverse design with deep neural networks based on knowledge transfer using imbalanced datasets. Opt. Express, 29, 28406-28415(2021). https://doi.org/10.1364/OE.435427

    [14] C. U. Hail et al. High quality factor metasurfaces for two-dimensional wavefront manipulation. Nat. Commun., 14, 8476(2023). https://doi.org/10.1038/s41467-023-44164-4

    [15] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17070(2023). https://doi.org/10.1038/natrevmats.2017.10

    [16] P. Vabishchevich, Y. Kivshar. Nonlinear photonics with metasurfaces. Photonics Res., 11, B50-B64(2023). https://doi.org/10.1364/PRJ.474387

    [17] P. R. Sharapova, S. S. Kruk, A. S. Solntsev. Nonlinear dielectric nanoresonators and metasurfaces: toward efficient generation of entangled photons. Laser Photonics Rev., 17, 2200408(2023). https://doi.org/10.1002/lpor.202200408

    [18] R. Kolkowski et al. Nonlinear nonlocal metasurfaces. Appl. Phys. Lett., 122, 160502(2023). https://doi.org/10.1063/5.0140483

    [19] W. Li et al. Machine learning for engineering meta‐atoms with tailored multipolar resonances. Laser Photonics Rev., 18, 2300855(2024). https://doi.org/10.1002/lpor.202300855

    [20] Y. Chauvin, M. I. Jordan, D. E. Rumelhart, D. E. Rumelhart. Forward models: supervised learning with a distal teacher. Backpropagation, 189-236(2013).

    [21] M. F. Limonov et al. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017). https://doi.org/10.1038/nphoton.2017.142

    [22] Y. H. Fu et al. Directional visible light scattering by silicon nanoparticles. Nat. Commun., 4, 1527(2013). https://doi.org/10.1038/ncomms2538

    [23] A. E. Miroshnichenko et al. Substrate-induced resonant magnetoelectric effects for dielectric nanoparticles. ACS Photonics, 2, 1423-1428(2015). https://doi.org/10.1021/acsphotonics.5b00117

    [24] A. Ospanova, M. Cojocari, A. Basharin. Modified multipoles in photonics. Phys. Rev. B, 107, 035156(2023). https://doi.org/10.1103/PhysRevB.107.035156

    [25] P. Lalanne et al. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev., 12, 1700113(2018). https://doi.org/10.1002/lpor.201700113

    [26] T. Wu et al. Modal analysis of electromagnetic resonators: user guide for the MAN program. Comput. Phys. Commun., 284, 108627(2023). https://doi.org/10.1016/j.cpc.2022.108627

    [27] A. Canós Valero et al. Theory, observation, and ultrafast response of the hybrid anapole regime in light scattering. Laser Photonics Rev., 15, 2100114(2021). https://doi.org/10.1002/lpor.202100114

    [28] H. B. Sedeh, N. M. Litchinitser. From non-scattering to super-scattering with Mie-tronics. Photonics Res., 12, 608-624(2024). https://doi.org/10.1364/PRJ.503182

    [29] S. Lepeshov, Y. Kivshar. Near-field coupling effects in Mie-resonant photonic structures and all-dielectric metasurfaces. ACS Photonics, 5, 2888-2894(2018). https://doi.org/10.1021/acsphotonics.8b00246

    [30] I. Staude et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano, 7, 7824-7832(2013). https://doi.org/10.1021/nn402736f

    [31] P. D. Terekhov et al. Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys. Rev. B, 99, 045424(2019). https://doi.org/10.1103/PhysRevB.99.045424

    [32] P. Kepic et al. Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible. ACS Photonics, 8, 1048-1057(2021). https://doi.org/10.1021/acsphotonics.1c00222

    [33] S. Sarkar et al. Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl. Mater. Interfaces, 11, 13752-13760(2019). https://doi.org/10.1021/acsami.8b20535

    [34] D. Zhao et al. Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces. Nanophotonics, 10, 2283-2308(2021). https://doi.org/10.1515/nanoph-2021-0083

    [35] K.-H. Kim, W.-S. Rim. Anapole resonances facilitated by high-index contrast between substrate and dielectric nanodisk enhance vacuum ultraviolet generation. ACS Photonics, 5, 4769-4775(2018). https://doi.org/10.1021/acsphotonics.8b01287

    [36] M. Semmlinger et al. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface. Nano Lett., 19, 8972-8978(2019). https://doi.org/10.1021/acs.nanolett.9b03961

    [37] M. Ossiander et al. Extreme ultraviolet metalens by vacuum guiding. Science, 380, 59-63(2023). https://doi.org/10.1126/science.adg6881

    [38] K. Yao, Y. Zheng. Near-ultraviolet dielectric metasurfaces: from surface-enhanced circular dichroism spectroscopy to polarization-preserving mirrors. J. Phys. Chem. C, 123, 11814-11822(2019). https://doi.org/10.1021/acs.jpcc.8b11245

    [39] Y. Yang et al. Revisiting optical material platforms for efficient linear and nonlinear dielectric metasurfaces in the ultraviolet, visible, and infrared. ACS Photonics, 10, 307-321(2019). https://doi.org/10.1021/acsphotonics.2c01341

    [40] C. C. Evans. Nonlinear Optics in Titanium Dioxide: From Bulk to Integrated Optical Devices(2013).

    [41] V. Roppo et al. Role of phase matching in pulsed second-harmonic generation: walk-off and phase-locked twin pulses in negative-index media. Phys. Rev. A, 76, 033829(2007). https://doi.org/10.1103/PhysRevA.76.033829

    [42] V. Roppo et al. Anomalous momentum states, non-specular reflections, and negative refraction of phase-locked, second-harmonic pulses. Metamaterials, 2, 135-144(2008). https://doi.org/10.1016/j.metmat.2008.03.006

    [43] J. Gao et al. Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces. Nat. Commun., 12, 5833(2021). https://doi.org/10.1038/s41467-021-26094-1

    [44] A. B. Evlyukhin, B. N. Chichkov. Multipole decompositions for directional light scattering. Phys. Rev. B, 100, 125415(2019). https://doi.org/10.1103/PhysRevB.100.125415

    [45] A. B. Evlyukhin et al. Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface. J. Opt. Soc. Am. B, 30, 2589-2598(2013). https://doi.org/10.1364/JOSAB.30.002589

    [46] K. Yao et al. Tuning multipolar mie scattering of particles on a dielectric-covered mirror(2023).

    [47] A. Yao et al. Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy. Opt. Express, 13, 2668-2677(2005). https://doi.org/10.1364/OPEX.13.002370

    Hooman Barati Sedeh, Renee C. George, Fangxing Lai, Hao Li, Wenhao Li, Yuruo Zheng, Dmitrii Tstekov, Jiannan Gao, Austin Moore, Jesse Frantz, Jingbo Sun, Shumin Xiao, Natalia M. Litchinitser, "Toward the meta-atom library: experimental validation of machine learning-based Mie-tronics," Adv. Photon. 7, 036004 (2025)
    Download Citation