• Acta Optica Sinica
  • Vol. 41, Issue 14, 1414001 (2021)
Xiaodong Yu, Muhui Jiang, Gongda Zhang, and Chuanyang Wang*
Author Affiliations
  • School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • show less
    DOI: 10.3788/AOS202141.1414001 Cite this Article Set citation alerts
    Xiaodong Yu, Muhui Jiang, Gongda Zhang, Chuanyang Wang. Influences of Copper Film Width on Polycarbonate Welding Strength and Weld Morphological Characteristics[J]. Acta Optica Sinica, 2021, 41(14): 1414001 Copy Citation Text show less
    Schematic of laser transmission welding
    Fig. 1. Schematic of laser transmission welding
    Strain gage pasting. (a) Schematic; (b) physical image
    Fig. 2. Strain gage pasting. (a) Schematic; (b) physical image
    Structural diagram of cross-section of weld part after polishing
    Fig. 3. Structural diagram of cross-section of weld part after polishing
    Cross-sectional morphologies of weldments for different laser absorption layers. (a) CB; (b) CWCB
    Fig. 4. Cross-sectional morphologies of weldments for different laser absorption layers. (a) CB; (b) CWCB
    Deformation features of weldments for different CWCB widths when P=45 W and v=6 mm/s. (a) w=1.0 mm; (b) w=1.5 mm; (c) w=2.0 mm; (d) w=2.5 mm; (e) w=3.0 mm; (f) w=3.5 mm
    Fig. 5. Deformation features of weldments for different CWCB widths when P=45 W and v=6 mm/s. (a) w=1.0 mm; (b) w=1.5 mm; (c) w=2.0 mm; (d) w=2.5 mm; (e) w=3.0 mm; (f) w=3.5 mm
    Effects of CWCB width on deformation depth and area
    Fig. 6. Effects of CWCB width on deformation depth and area
    Overflow morphologies on weld edges for different CWCB widths. (a) w=1 mm; (b) w=2 mm; (c) w=3 mm
    Fig. 7. Overflow morphologies on weld edges for different CWCB widths. (a) w=1 mm; (b) w=2 mm; (c) w=3 mm
    EDS analysis images of cross section. (a) Elemental distribution; (b) elemental distribution for C; (c) elemental distribution for O; (d) elemental distribution for Cu
    Fig. 8. EDS analysis images of cross section. (a) Elemental distribution; (b) elemental distribution for C; (c) elemental distribution for O; (d) elemental distribution for Cu
    Schematic of compositions of weld seam
    Fig. 9. Schematic of compositions of weld seam
    Effects of CWCB width on different variables. (a) Welding strength and weld width; (b) residual stress
    Fig. 10. Effects of CWCB width on different variables. (a) Welding strength and weld width; (b) residual stress
    ParameterGlass transition temperature /℃Melting temperature /℃Thermal decomposition temperature /℃
    Value135--145220--230500--550
    Table 1. Thermodynamic parameters of PC
    ParameterValue
    Laser wavelength /nm980
    Maximum laser output power /W120
    Pulse width /ms0.01--3.00
    Pulse frequency /Hz1--50
    Fiber core diameter /μm600
    Table 2. Technical parameters of laser welding machine WFD120
    No.P /Wv /(mm·s-1)w /mmAbsorption layerS /MPaWd /mmRs /MPaD /%
    14562CWCB17.252.825.22
    CB15.632.866.0914.29
    24522CWCB18.423.7217.49
    CB16.533.7620.2413.59
    35041.5CWCB19.152.4312.33
    CB18.202.6515.2819.31
    Table 3. Weldability comparison among PC plates with different absorption layers
    Xiaodong Yu, Muhui Jiang, Gongda Zhang, Chuanyang Wang. Influences of Copper Film Width on Polycarbonate Welding Strength and Weld Morphological Characteristics[J]. Acta Optica Sinica, 2021, 41(14): 1414001
    Download Citation