• Advanced Photonics Nexus
  • Vol. 1, Issue 2, 026001 (2022)
Hongsen He1、†, Huajun Tang1, Meng Zhou1, Hei Ming Lai2、3、4, Tian Qiao1、*, Yu-xuan Ren5, Cora S. W. Lai6、7, Ho Ko2、3、4, Xiaoming Wei8, Zhongmin Yang8, Kevin K. Tsia1、9, and Kenneth K. Y. Wong1、9、*
Author Affiliations
  • 1University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong, China
  • 2Chinese University of Hong Kong, Faculty of Medicine, Department of Psychiatry, Hong Kong, China
  • 3Chinese University of Hong Kong, Faculty of Medicine, Department of Medicine and Therapeutics, Hong Kong, China
  • 4Chinese University of Hong Kong, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, Hong Kong, China
  • 5Fudan University, Shanghai Medical College, Institute for Translational Brain Research, Shanghai, China
  • 6University of Hong Kong, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, China
  • 7University of Hong Kong, State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China
  • 8South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
  • 9Advanced Biomedical Instrumentation Centre, Hong Kong, China
  • show less
    DOI: 10.1117/1.APN.1.2.026001 Cite this Article Set citation alerts
    Hongsen He, Huajun Tang, Meng Zhou, Hei Ming Lai, Tian Qiao, Yu-xuan Ren, Cora S. W. Lai, Ho Ko, Xiaoming Wei, Zhongmin Yang, Kevin K. Tsia, Kenneth K. Y. Wong. Deep-tissue two-photon microscopy with a frequency-doubled all-fiber mode-locked laser at 937 nm[J]. Advanced Photonics Nexus, 2022, 1(2): 026001 Copy Citation Text show less
    References

    [1] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Methods, 2, 932-940(2005).

    [2] J. Wu, N. Ji, K. K. Tsia. Speed scaling in multiphoton fluorescence microscopy. Nat. Methods, 15, 800-812(2021).

    [3] W. Zong et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods, 14, 713-719(2017).

    [4] J. Wu et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods, 17, 287-290(2020).

    [5] N. Ji, J. C. Magee, E. Betzig. High-speed, low-photodamage nonlinear imaging using passive pulse splitters. Nat. Methods, 5, 197-202(2008).

    [6] R. Hoebe et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat. Biotechnol., 25, 249-253(2007).

    [7] J. Icha et al. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays, 39, 1700003(2017).

    [8] G. Donnert, C. Eggeling, S. W. Hell. Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods, 4, 81-86(2007).

    [9] X. Gao et al. Core-pumped femtosecond Nd:fiber laser at 910 and 935 nm. Opt. Lett., 39, 4404-4407(2014).

    [10] B. Chen et al. 910 nm femtosecond Nd-doped fiber laser for in vivo two-photon microscopic imaging. Opt. Express, 24, 16544-16549(2016).

    [11] C.-H. Hage et al. Two-photon microscopy with a frequency-doubled fully fusion-spliced fiber laser at 1840 nm. Opt. Lett., 43, 5098-5101(2018).

    [12] R. Dai et al. High energy (>40 nJ), sub-100 fs, 950 nm laser for two-photon microscopy. Opt. Express, 29, 38979-38988(2021).

    [13] J. W. Dawson et al. High-power 938-nm cladding pumped fiber laser. Proc. SPIE, 4974, 75-82(2003).

    [14] S. Fu et al. High-efficiency Nd3+-doped phosphate fiber laser at 880 nm. IEEE Photonics Technol. Lett., 32, 1179-1182(2020). https://doi.org/10.1109/LPT.2020.3016604

    [15] K. Arai et al. Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J. Appl. Phys., 59, 3430-3436(1986).

    [16] K. Qian et al. Mode-locked Nd-doped fiber laser at 930 nm. Opt. Lett., 39, 267-270(2014).

    [17] A. Wang, A. George, J. Knight. Three-level neodymium fiber laser incorporating photonic bandgap fiber. Opt. Lett., 31, 1388-1390(2006).

    [18] B. Chen et al. Robust hollow-fiber-pigtailed 930 nm femtosecond Nd:fiber laser for volumetric two-photon imaging. Opt. Express, 25, 22704-22709(2017).

    [19] W. Liu et al. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach. Opt. Express, 24, 15328-15340(2016).

    [20] P. Wang et al. 926 nm Yb-doped fiber femtosecond laser system for two-photon microscopy. Appl. Phys. Express, 12, 032008(2019).

    [21] K. Charan et al. Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy. Biomed. Opt. Express, 9, 2304-2311(2018).

    [22] N. G. Horton et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Methods, 7, 205-209(2013).

    [23] A. Zach et al. All-fiber widely tunable ultrafast laser source for multimodal imaging in nonlinear microscopy. Opt. Lett., 44, 5218-5221(2019).

    [24] B. Li et al. Investigation of the long wavelength limit of soliton self-frequency shift in a silica fiber. Opt. Express, 26, 19637-19647(2018).

    [25] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135(2006).

    [26] C. Xu, W. W. Webb. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B-Opt. Phys., 13, 481-491(1996).

    [27] Y. Hontani, F. Xia, C. Xu. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Sci. Adv., 7, eabf3531(2021).

    [28] EGFP.

    [29] EYFP.

    [30] P. Ciąćka et al. Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. J. Opt. Soc. Am. B-Opt. Phys., 35, 1301-1307(2018).

    [31] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 55, 447-449(1985).

    [32] C. Li et al. Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser. APL Phontonics, 2, 121302(2017).

    [33] Spectra Database.

    [34] E. P. Perillo et al. Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser. Biomed. Opt. Express, 7, 324-334(2016).

    [35] K. Takasaki, R. Abbasi-Asl, J. Waters. Superficial bound of the depth limit of two-photon imaging in mouse brain. eNeuro, 7, ENEURO.0255-19.2019(2020).

    [36] A. Birkner, C. H. Tischbirek, A. Konnerth. Improved deep two-photon calcium imaging in vivo. Cell Calcium, 64, 29-35(2017).

    Hongsen He, Huajun Tang, Meng Zhou, Hei Ming Lai, Tian Qiao, Yu-xuan Ren, Cora S. W. Lai, Ho Ko, Xiaoming Wei, Zhongmin Yang, Kevin K. Tsia, Kenneth K. Y. Wong. Deep-tissue two-photon microscopy with a frequency-doubled all-fiber mode-locked laser at 937 nm[J]. Advanced Photonics Nexus, 2022, 1(2): 026001
    Download Citation