• Laser & Optoelectronics Progress
  • Vol. 48, Issue 10, 101407 (2011)
Zhou Yuliang1、2、*, Sui Zhan1, Liu Lanqin1, Su Jingqin1, Li Ping1, Zhang Rui1, Xu Lixin2, Wang Wenyi1, and Mo Lei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop48.101407 Cite this Article Set citation alerts
    Zhou Yuliang, Sui Zhan, Liu Lanqin, Su Jingqin, Li Ping, Zhang Rui, Xu Lixin, Wang Wenyi, Mo Lei. Research on Beam Smoothing Technology for High-Power Laser System[J]. Laser & Optoelectronics Progress, 2011, 48(10): 101407 Copy Citation Text show less
    References

    [1] Y. Kato, K. Mima, N. Miyanaga et al.. Randam phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Phys. Rev. Lett., 1984, 53(11): 1057~1060

    [2] S. Skupsky, T. J. Kessler. Speckle-free plate (diffuser) for far-field application[J]. J. Appl. Phys., 1993, 74(7): 4310~4316

    [3] Xiao Jun, Lü Baida. Theoretic study of smoothing speckles using zero-correlation phase plate[J]. Acta Optica Sinica, 2000, 20(10): 1341~1346

    [4] S. N. Dixit, J. K. Lawson, K. R. Manes et al.. Kinoform phase plates for focal plane irradiance profile control[J]. Opt. Lett., 1994, 19(6): 417~419

    [5] Distributed phase plates for super-Gaussian focal-plane irradiance profiles[R]. LLE Review, 1995, 63: 126~129

    [6] Jerome Heauport, Xavier Ribeyre, Jerome Daun′os et al.. Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities[J]. Appl. Opt., 2003, 42(13): 2377~2382

    [7] Ximing Deng, Xiangchun Liang, Zezun Chen et al.. Uniform illumination of large targets using a lens array[J]. Appl. Opt., 1986, 25(3): 377~381

    [8] Qiu Yue, Qian Liejia, Huang Hongyi et al.. Improve illumination uniformity by suppressing the diffraction of a lens array[J]. Chinese J. Lasers, 1995, A22(1): 27~31

    [9] Phase conversion using distributed polarization rotation[R]. LLE Review, 1990, 45: 1~12

    [10] R. H. Lehmberg, A. J. Schmitt, S. E. Bodner. Theory of induced spatial incoherence[J]. J. Appl. Phys., 1987, 62(7): 2680~2671

    [11] R. H. Lehmberg, J. Go ldhar. Use of incoherence to produce smooth and controllable irradiation profiles with KrF fusion lasers[J ]. Fusion Technology, 1987, 11(5): 532~541

    [12] S. P. Obenschain, J. Grun, M. J. Herbst et al.. Laser-target interaction with induced spatial incoherence[J]. Phys. Rev. Lett., 1986, 56(26): 2807~2810

    [13] S. P. Obenschain, C. J. Pawley, A. N. Mostovych et al.. Reduction of Raman scattering in a plasma to convective levels using induced spatial incoherence[J ]. Phys. Rev. Lett., 1989, 62(7): 768~771

    [14] H. Nakano, T. Kanabe, K. Yagi et al.. Amplification and propagation of partially coherent amplified spontaneous emission from Ndglass[J]. Opt. Commun., 1990, 78(2): 123~127

    [15] H. Nakano, K. Tsubakimoto, N. Miyanaga et al.. Spectrally dispered spontaneous emission for improving irradiation uniformity intohigh power Ndglass laser system[J]. J. Appl. Phys., 1993, 73(5): 2122~2131

    [16] S. Skupsky, R. W. Short, T. Kessler et al.. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. J. Appl. Phys., 1989, 66(8): 3456~3462

    [17] Joshua E. Rothenberg. Two dimensional beam smoothing by spectral dispersion for direct drive inertial confinement fusion[C]. SPIE, 1995, 2633: 634~644

    [18] Two-Dimensional SSD on OMEGA[R]. LLE Review, 1996, 69: 1~10

    [19] D. Eimerl, J. M. Auerbach, C. E. Barker et al.. Multicrystal designs for efficient third-harmonic generation[J]. Opt. Lett., 1997, 22(16): 1208~1210

    [20] A. Babushkin, R. S. Craxton, S. Oskoui et al.. Demonstration of the dual-tripler scheme for increased-bandmidth third-harmonic generation[J]. Opt. Lett., 1998, 23(12): 927~939

    [21] Performance of 1-THz-bandwidth, 2-D smoothingby spectral dispersion and polarization smoothing of high-power sikud-stae kaser beans[R]. LLE Review, 2004, 98: 49~53

    [22] Preliminary design of NIF 2-D SSD[R]. LLE Review, 2001, 85: 39~46

    [23] J. D. Lindl, P. Amendt, R. L. Berger et al.. The physics basis for ignition using indirect-drive targets on the national ignition facility[J]. Phys. Plasmas., 2004, 11(2): 339~491

    [24] C. A. Haynam, P. J. Wegner, J. M. Auerbach et al.. National ignition facility laser performance status[J]. Appl. Opt., 2007, 46(16): 3276~3303

    [25] J. L. Kline, S. H. Glenzer, R. E. Olson et al.. Observation of high soft X-ray drive in large-scale hohlraums at the national ignition facility[J]. Phys. Rev. Lett., 2011, 106(8): 085003

    [26] K. Tsubakimoto, M. Nakatsuka, N. Miyanaga et al.. Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion[C]. SPIE, 1993. 186~197

    [27] G. Miyaji, N. Miyanaga, S. Urushihara et al.. Three-directional spectral dispersion for smoothing of a laser irradiance profile[J]. Opt, Lett., 2002, 27(9): 725~727

    [28] Shiji Wang, Zunqi Lin, Yuan Gu et al.. Intense nickel-like neodymium X-ray laser at 7.9 nm with a double-curved-slab targer[J]. Jpn. J. Appl. Phys. Part 2, 1998, 37: L1234~L1237

    [29] Wang Chen, Gu Yuan, Fu Sizu et al.. Measurement of electron density distribution in a laser plasma with soft X-ray laser deffectometry[J]. Acta Physica Sinica, 2002, 51(4): 847~851

    [30] S. Fu, Y. Gu, Jiang Wu et al.. Laser-driven shock stability in Aland shock compressibilities of Fe up to 0.8 TPa and SiO2 up to 0.4 TPa[J]. Phys. Plasmas, 1995, 2(9): 3461~3465

    [31] Fu Sizu, Sun Yuqin, Huang Xiuguang et al.. Optimizing design for uniform irradiation system on target surface of "Shengguang-Ⅱ" facifity[J]. Chinese J. Lasers, 2003, 30(2): 129~133

    [32] Zhou Shenlei, Lin Zunqi, Zhu Jian et al.. Computation and study of smoothing by spectral dispersion[J]. Chinese J. Lasers, 2005, 32(3): 341~345

    [33] Zhou Shenlei, Zhu Jian, Li Xuechun et al.. Experimental study of smoothing by spectral dispersion[J]. Chinese J. Lasers, 2006, 33(3): 321~325

    [34] X. Jiang, S. Zhou, Zunqi Lin. Improved uniformity of target illumination by combining a lens array and the technique of spected dispersion[J]. J. Appl. Phys., 2007, 101(2): 0230109

    [35] Xiujuan Jiang, Shenlei Zhou, Zunqi Lin et al.. Two-dimensional performance of uiform irradioation with the use of an edge-softened lens array and spectral dispersion[J]. Appl. Opt., 2007, 46(16): 3164~3168

    [36] Jiang Xiujuan, Zhou Shenlei, Lin Zunqi. Improved target irradiation uniformity using two-dimensional spectral dispersion and lens array[J]. Chinese J. Lasers, 2007, 34(11): 1533~1537

    [37] Li Jinghui, Zhang Hujie, Zhou Shenlei et al.. Effect og smoothing by spectral dispersion considering the hole used in spacial filter[J]. Acta Optica Sinica, 2010, 30(3): 827~832

    [38] Zhang Hujie, Zhou Shenlei, Li Jinghui et al.. The experienmental reaearch on double-pass phase molulator applied on technology of smoothing by spectral dispersion[J]. Acta Optica Sinica, 2010, 30(4): 1071~1075

    [39] Li Ping , Ma Chi, Su Jingqin et al.. Design of continus phase plates for controlling spatial spectrum of focal spot[J]. High Power Laser and Particle Beams, 2008, 20(7): 1114~1118

    [40] Zhang Rui, Zhang Xiaoming, Su Jingqin et al.. Temporal beam smoothing technique using chirped pulse stacking[J]. Acta Optica Sinica, 2006, 26(10): 1512~1516

    [41] Li Ping, Su Jingqin, Ma Chi et al.. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot[J]. Acta Physica Sinica, 2009, 58(9): 330~335

    [42] Zhang Rui, Wang Jianjun, Su Jingqin et al.. Experimental study on smoothing by spectraldispersion using linear frequency-modulated pulse[J]. Acta Physica Sinica, 2010, 59(2): 1088~1094

    [43] Rui Zhang, Jingqin Su, Jianjun Wang et al.. Experimental research on the influences of smoothingby spectral dispersion on the technical integration line[J]. Appl. Opt., 2011, 50(5): 687~695

    CLP Journals

    [1] Wang Meicong, Zhu Mingzhi, Chen Gang, Wu Wenkai, Fu Xuenong. Research of Transport Beams Arrangement in Target Area for Large Scale ICF Facility[J]. Laser & Optoelectronics Progress, 2013, 50(1): 11403

    [2] Ji Lailin, Liu Chong, Zhu Baoqiang, Wu Rong, Zhou Shenlei, Lin Zunqi. Analysis of Influence of Beam Smoothing on Third Harmonic Generation in SGII Upgrade[J]. Acta Optica Sinica, 2013, 33(12): 1219002

    [3] Feng Youjun, Wang Zhong. Influence of Different Distorted Wavefronts on Continuous Phase Plate Smoothing Focal Spot[J]. Laser & Optoelectronics Progress, 2015, 52(7): 72204

    [4] Chen Ying, Wang Lulu, Liu Guangcan, Fu Xiquan. Survey on Frequency Conversion of Broadband High Power Nd:Glass laser[J]. Laser & Optoelectronics Progress, 2014, 51(2): 20005

    [5] Chen Ying, Wang Lulu, Liu Guangcan, Xia Xu, Fu Xiquan. FM-to-AM Effect in the Frequency Conversion of Broadband Nd∶Glass Laser[J]. Chinese Journal of Lasers, 2012, 39(12): 1202009

    [6] Wen Ping, Li Zelong, Zhong Zheqiang, Zhang Bin. Parameters Optimization for Multi-color Multi-central Frequency Smoothing by Spectral Dispersion[J]. Acta Optica Sinica, 2015, 35(6): 614001

    Zhou Yuliang, Sui Zhan, Liu Lanqin, Su Jingqin, Li Ping, Zhang Rui, Xu Lixin, Wang Wenyi, Mo Lei. Research on Beam Smoothing Technology for High-Power Laser System[J]. Laser & Optoelectronics Progress, 2011, 48(10): 101407
    Download Citation