• Laser & Optoelectronics Progress
  • Vol. 57, Issue 24, 241001 (2020)
Yongjie Ma* and Peipei Liu
Author Affiliations
  • College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
  • show less
    DOI: 10.3788/LOP57.241001 Cite this Article Set citation alerts
    Yongjie Ma, Peipei Liu. Convolutional Neural Network Based on DenseNet Evolution for Image Classification Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(24): 241001 Copy Citation Text show less
    Structure diagram of CNN
    Fig. 1. Structure diagram of CNN
    Structure diagram of DenseNet
    Fig. 2. Structure diagram of DenseNet
    Flow chart of EA
    Fig. 3. Flow chart of EA
    Flow chart of D-ECNN algorithm
    Fig. 4. Flow chart of D-ECNN algorithm
    Partial images of the data set. (a) Positive sample; (b) negative sample
    Fig. 5. Partial images of the data set. (a) Positive sample; (b) negative sample
    Verification accuracies of the two algorithms
    Fig. 6. Verification accuracies of the two algorithms
    Test accuracies of D-ECNN algorithm after 20 experiments
    Fig. 7. Test accuracies of D-ECNN algorithm after 20 experiments
    TermParameter setting
    Learning rate[0.001,0.1]
    Dropout rate[0,0.1]
    Number of filters in 2D convolution[4,6,18]
    Filter size for 2D convolution[2,3]
    Number of units[64,128,256]
    Layer or block[2D convolution, fully connected layers, DenseNet]
    Activation function of 2D convolutional layer[Leaky ReLU, RelU, PReLU, ReLU]
    Activation function of the fully connected layer[Sigmoid, Softmax, ReLU]
    Activation function of the last fully connected layerSigmoid
    Table 1. Parameter setting of experiment
    LayerD-ECNNOutput channel
    2D convolutional layerConv(3×3)64
    2D convolutional layerConv(2×2)16
    Dense blockConv(1×1)Conv(3×3)8
    Conv(1×1)Conv(3×3)8
    Conv(1×1)Conv(3×3)8
    Transition layerConv(1×1)average pool(2×2)4
    Fully connected layerSigmoid64
    Fully connected layerSigmoid2
    Table 2. Structure of D-ECNN model
    RateAccuracyRecallPrecisionF1-score
    9∶195.7895.5071.7381.92
    8∶295.1594.5084.9489.48
    7∶395.3694.3190.6292.43
    6∶495.3994.7593.7894.26
    Average95.4294.7785.2889.52
    Table 3. Test performances of D-ECNN model under different segmentation rates unit: %
    AlgorithmAccuracyRecallPrecisionF1-score
    D-ECNN95.3494.8895.7795.32
    VGG1694.5692.6396.3694.46
    Table 4. Performance indicators of D-ECNN and VGG16 algorithms unit: %
    AlgorithmNumber of network layersNumber of network parametersNumber of training parametersModel file size /MTime-consuming of the test data set /s
    D-ECNN1170939697031.040.0345
    VGG161627844930278344342120.3967
    Table 5. Train parameters of the two algorithms in the same train set
    Algorithm modelNumber of layersLearning rateAccuracy /%
    D-ECNN110.005095.34
    Model-1180.003594.53
    Model-2190.003793.42
    Model-3130.005994.22
    Model-4190.004790.73
    Model-5110.004568.76
    Model-6190.005594.82
    Model-750.005894.38
    Model-8180.005594.83
    Model-960.004595.23
    Table 6. Parameters of 10 algorithm models
    Yongjie Ma, Peipei Liu. Convolutional Neural Network Based on DenseNet Evolution for Image Classification Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(24): 241001
    Download Citation