• Chinese Optics Letters
  • Vol. 14, Issue 9, 091001 (2016)
Kejia Wang1,2, Ziliang Ping3,4, and Yunlong Sheng1,*
Author Affiliations
  • 1Center for Optics, Photonics and Lasers, Department of Physics, Physical Engineering and Optics, Laval University, Quebec G1V0A6, Canada
  • 2Inner Mongolia Electronic Information Vocational Technical College, Huhhot 010070, China
  • 3School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 4Inner Mongolia Normal University, Huhhot 010020, China
  • show less
    DOI: 10.3788/COL201614.091001 Cite this Article Set citation alerts
    Kejia Wang, Ziliang Ping, Yunlong Sheng, "Development of image invariant moments—a short overview," Chin. Opt. Lett. 14, 091001 (2016) Copy Citation Text show less

    Abstract

    We give a brief overview on the more than 50 years of development of the moment-based image description, the moment invariants, and the orthogonal moments. Some basic ideas for significantly improving the performance of the image moment-based methods, such as the use of the low-order radial moments for reducing information suppression drawback and the separation of the radial basis from the circular harmonic basis for a free selection of the orthogonal radial polynomials, are presented. Performance measures for the orthogonal moments are discussed from the point of view of image analysis. A moment family list is proposed, which includes most of the representative moments in use and the discrete orthogonal moments.
    mp,q=xpyqf(x,y)dxdy,(1)

    View in Article

    h1=μ20+μ02,h2=(μ20μ02)2+4μ112,h3=(μ303μ12)2+(3μ21μ03)2,h4=(μ30+μ12)2+(μ21+μ03)2,h5=(μ303μ12)(μ30+μ12)[(μ30+μ12)23(μ21+μ03)2]+(3μ21μ03)(μ21+μ03)[3(μ30+μ12)2(μ21+μ03)2],h6=(μ20μ02)[(μ30+μ12)2(μ21+μ03)2]+4μ11(μ30+μ12)(μ21+μ03),h7=(3μ21μ03)(μ30+μ12)[(μ30+μ12)23(μ21+μ03)2](μ303μ12)(μ21+μ03)[3(μ30+μ12)2(μ21+μ03)2],(2)

    View in Article

    Mn,m=02π01f(r,θ)rn1ejmθrdrdθ,(3)

    View in Article

    Mn,m=02π0f(r,θ)rn1ejmθrdrdθ=f(x,y)(x+jy)(nm)/2(xjy)(n+m)/2dxdy,(4)

    View in Article

    Fa,b,m=02π01ψa,b(r)ejmθf(r,θ)rdrdθ,(5)

    View in Article

    ψ(r)=4αn+12π(n+1)σcos(2πf0(2r1))exp((2r1)22σ2(n+1)),(6)

    View in Article

    fm(r)=02πejmθf(r,θ)dθ,(7)

    View in Article

    ψa,b(r)=1aψ(rba),(8)

    View in Article

    Anm=n+1π02π01Rnm(r)exp(jmθ)f(r,θ)rdrdθ,(9)

    View in Article

    Rnm(r)=s=0(n|m|)/2(1)s(ns)!s!((n+|m|)/2s)!((n|m|)/2s)!rn2s,(10)

    View in Article

    Φnm=12πan02π01Qn(r)exp(jmθ)f(r,θ)rdrdθ,(11)

    View in Article

    Qn(r)=s=0nαnsrs,withαns=(1)n+s(n+s+1)!(ns)!s!(s+1)!.(12)

    View in Article

    ϕnm=12π02π01Rn(r)exp(jmθ)f(r,θ)rdrdθ,(13)

    View in Article

    Rn(r)=8π[w(r)]1/2r1/2Un*(r),(14)

    View in Article

    Un*(r)=k=0[n/2](1)k(nk)!k!(n2k)![2(2r1)]n2k,(15)

    View in Article

    01Un*(r)Uk*(r)w(r)dr=π8δnk,(16)

    View in Article

    Φnm=12π02π01Jn(p,q,r)exp(jmθ)f(r,θ)rdrdθ,(17)

    View in Article

    w(p,q,r)=(1r)pqrq1,(18)

    View in Article

    01Gn(p,q,r)Gk(p,q,r)w(p,q,r)dr=bn(p,q)δnk,(19)

    View in Article

    Gn(p,q,r)=n!Γ(q)Γ(n+p)s=0n(1)nsΓ(n+p+s)(ns)!s!Γ(q+s)rs,(20)

    View in Article

    Jn(p,q,r)=Gn(p,q,r)w(p,q,r)/bn(p,q,r).(21)

    View in Article

    bn(p,q)=n!Γ(n+pq+1)[Γ(q)]2(2n+p)Γ(n+p)Γ(n+q).(22)

    View in Article

    Bnm=12παn02π01Jv(λnr)exp(jmθ)f(r,θ)rdrdθ,(23)

    View in Article

    01Jv(λnr)Jv(λkr)dr=αnδnk,(24)

    View in Article

    ϕnm=12π02π01Tn(r)exp(jmθ)f(r,θ)rdrdθ.(25)

    View in Article

    x=0N1pm(x)pn(x)w(x)=ρ(n)δmn,(26)

    View in Article

    Pmn=x=0M1y=0N1f(x,y)p˜m(x)p˜n(y),(27)

    View in Article

    p˜n(x)=pn(x)w(x)/ρ(n).(28)

    View in Article

    tn(x)=n!k=0n(1)nk(N1knk)(n+kn)(xk),(29)

    View in Article

    ρ(n,N)=N(N21)(N222)(N2n2)2n+1=(2n)!(N+n2n+1),n=0,1,N1.(30)

    View in Article

    t˜n(x)=tn(x)/β(n,N),(31)

    View in Article

    ρ˜(n,N)=ρ(n,N)/β(n,N)2andβ(n,N)=Nn.(32)

    View in Article

    w(x;p,N)=(Nx)px(1p)Nx,(33)

    View in Article

    ρ(n;p,N)=(1)n(1pp)nn!(N)n.(34)

    View in Article

    Kn(x;p,N)=k=0Nak,n,pxk=F12(n,x;N;1p),(35)

    View in Article

    Frs(a1,,ar;b1,,bs;z)=k=0(a1)k(a2)k(ar)k(b1)k(b1)k(bs)kzkk!,(36)

    View in Article

    (a)k=a(a+1)(a+k1)=Γ(a+k)Γ(a).(37)

    View in Article

    hn(μ,ν)(x,N)=(N+ν1)n(N1)n×k=0n(1)k(n)k(x)k(2N+μ+νn1)k(N+ν1)k(N1)k1k!,(38)

    View in Article

    x=0N1w(x)hm(μ,ν)(x,N)hn(μ,ν)(x,N)=dn2δmn,(39)

    View in Article

    w(x)=1Γ(x+1)Γ(x+μ+1)Γ(N+νx)Γ(Nnx),(40)

    View in Article

    dn2=Γ(2N+μ+νn)(2N+μ+ν2n1)Γ(N+μ+νn)×1Γ(N+μn)Γ(N+νn)Γ(n+1)Γ(Nn).(41)

    View in Article

    hn(x;α,β,N)=F23(n,n+α+β+1,x;α+1,N;1),(42)

    View in Article

    w(x;α,β,N)=(α+xx)(β+NxNx),(43)

    View in Article

    d2(n;α,β,N)=(1)n(n+α+β+1)N+1(β+1)nn!(2n+α+β+1)(α+1)n(N)nN!.(44)

    View in Article

    Wnm=s=ab1t=ab1w^n(c)(s,a,b)w^m(c)(t,a,b)f(s,t),(45)

    View in Article

    wn(c)(s,a,b)=(ab+1)n(a+c+1)nn!×F23(n,as,a+s+1;ab+1,a+c+1;1),(46)

    View in Article

    s=ab1ρ(s)wn(c)(s,a,b)wm(c)(s,a,b)[Δx(s12)]=dn2δnm.(47)

    View in Article

    ρ(s)=Γ(a+s+1)Γ(c+s+1)Γ(sa+1)Γ(bs)Γ(b+s+1)Γ(sc+1),(48)

    View in Article

    dn2=Γ(a+c+n+1)n!(ban1)!Γ(bcn).(49)

    View in Article

    w^n(c)(s,a,b)=wn(c)(s,a,b)ρ(s)dn2[Δx(s12)].(50)

    View in Article

    Unm=s=ab1t=ab1u^n(α,β)(s,a,b)u^m(α,β)(t,a,b)f(s,t),(51)

    View in Article

    un(α,β)(s,a,b)=1n!(ab+1)n(β+1)n(a+b+α+1)n×F34(n,α+β+n+1,as,a+s+1;β+1,ab+1,a+b+α+1;1),(52)

    View in Article

    s=ab1ρ(s)un(α,β)(s,a,b)um(α,β)(s,a,b)[Δx(s12)]=dn2δnm,(53)

    View in Article

    ρ(s)=Γ(a+s+1)Γ(sa+β+1)Γ(b+αs)Γ(b+α+s+1)Γ(aβ+s+1)Γ(sa+1)Γ(bs)Γ(b+s+1),(54)

    View in Article

    dn2=Γ(α+n+1)Γ(β+n+1)Γ(ba+α+β+n+1)(α+β+2n+1)n!(ban1)!Γ(α+β+n+1)×Γ(a+b+α+n+1)Γ(a+bβn).(55)

    View in Article

    u^n(α,β)(s,a,b)=un(α,β)(s,a,b)ρ(s)dn2[Δx(s12)].(56)

    View in Article

    Spq=1nρ(p,m)r=0m1k=0n1tp,m(r)ej2πqknf(r,θk),(57)

    View in Article

    tp,m(r)=p!mpk=0p(1)pk(m1kpk)(p+kp)(rk),(58)

    View in Article

    ρ(p,m)=m(11m2)(122m2)(1p2m2)2p+1,(59)

    View in Article