• Journal of Inorganic Materials
  • Vol. 36, Issue 2, 175 (2021)
Yong LIU1, Haijun BAI1, Qizhi ZHAO1, Jinge YANG1, Yujie LI2、*, Chunman ZHENG2、*, and Kai XIE2
Author Affiliations
  • 11. 61699 Unit of People’s Liberation Army of China, Zhijiang 443200, China
  • 22. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.15541/jim20200012 Cite this Article
    Yong LIU, Haijun BAI, Qizhi ZHAO, Jinge YANG, Yujie LI, Chunman ZHENG, Kai XIE. Storage Aging Mechanism of LiNi0.8Co0.15Al0.05O2/Graphite Li-ion Batteries at High State of Charge[J]. Journal of Inorganic Materials, 2021, 36(2): 175 Copy Citation Text show less
    References

    [1] N NITTA, F WU, T LEE J et al. Li-ion battery materials: present and future. Materials Today, 18, 252-264(2015).

    [2] Battery Calendar Life Estimator Manual Modeling and Simulation. INL/EXT-, 08015136, 2012.

    [3] K XU. Electrolytes and interfaces in Li-ion batteries and beyond. Chemical Reviews, 114, 11503-11618(2014).

    [4] H BRYNGELSSON, M STJERNDAHL, T GUSTAFSSON et al. How dynamic is the SEI. Journal of Power Sources, 174, 970-975(2007).

    [5] R LIU R, X DENG, R LIU X et al. Facet dependent SEI formation on LiNi0.5Mn1.5O4 cathode identified by in-situ single particle atomic force microscopy. Chemical Communications, 50, 15756-15759(2014).

    [6] K EDSTR M, T GUSTAFSSON, O THOMAS J. The cathode- electrolyte interface in the Li-ion battery. Electrochimica Acta, 50, 397-403(2004).

    [7] R PALAC N M, A DE G. Why do batteries fail?. Science, 351, 1253292(2016).

    [8] A EDDAHECH, O BRIAT, M VINASSA J. Performance comparison of four lithium-ion battery technologies under calendar aging. Energy, 84, 542-550(2015).

    [9] X HAN, L LU, Y ZHENG et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation, 1, 100005(2019).

    [10] S WATANABE, M KINOSHITA, K NAKURA. Capacity fade of LiAylNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiAylNi1-x-yCoxO2 and LiCoO2 cathodes in cylindrical lithium-ion cell. Journal of Power Sources, 247, 412-422(2014).

    [11] M KASSEM, J BERNARD, R REVEL et al. Calendar aging of a graphite/LiFePO4 cell. Journal of Power Sources, 208, 296-305(2012).

    [12] S GROLLEAU, A DELAILLE, H GUALOUS et al. Calendar aging of commercial graphite/LiFePO4 cell-predicting capacity fade under time dependent storage conditions. Journal of Power Sources, 255, 450-458(2014).

    [13] V THOMAS E, I BLOOM, P CHRISTOPHERSEN J et al. Rate-based degradation modeling of lithium-ion cells. Journal of Power Sources, 206, 378-382(2012).

    [14] S LEKGOATHI M D, M VILAKAZI B, B WAGENER J et al. Decomposition kinetics of anhydrous and moisture exposed LiPF6 salts by thermogravimetry. Journal of Fluorine Chemistry, 149, 53-56(2013).

    [15] T KAWAMURA, S OKADA, I YAMAKI J. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. Journal of Power Sources, 156, 547-554(2006).

    [16] B PINSON M, Z BAZANT M. Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. Journal of the Electrochemical Society, 160, A243-A250(2012).

    [17] Y CHUNG K, S YOON W, B KIM K et al. Formation of an SEI on a LiMn2O4 cathode during room temperature charge-discharge cycling studied by soft X-ray absorption spectroscopy at the fluorine k-edge. Journal of Applied Electrochemistry, 41, 1295-1299(2011).

    [18] P ABRAHAM D, D TWESTEN R, M BALASUBRAMANIAN et al. Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells. Journal of the Electrochemical Society, 150, A1450-A1456(2003).

    [19] P ABRAHAM D, D TWESTEN R, M BALASUBRAMANIAN et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells. Electrochemistry Communications, 4, 620-625(2002).

    [20] M NIE, D CHALASANI, P ABRAHAM D et al. Lithium ion battery graphite solid electrolyte interface revealed by microscopy and spectroscopy. Journal of Physical Chemistry C, 117, 1257-1267(2013).

    [21] E PELED, S MENKIN. Review—SEI: past, present and future. Journal of the Electrochemical Society, 164, A1703-A1719(2017).

    [22] M GAUTHIER, J CARNEY T, A GRIMAUD et al. Electrode- electrolyte interface in Li-ion batteries: current understanding and new insights. The Journal of Physical Chemistry Letters, 6, 4653-4672(2015).

    [23] P VERMA, P MAIRE, P NOV K. A review of the features and analyses of the solid electrolyte interface in Li-ion batteries. Electrochimica Acta, 55, 6332-6341(2010).

    [24] J NANDA, G YANG, T HOU et al. Unraveling the nanoscale heterogeneity of solid electrolyte interface using tip-enhanced Raman spectroscopy. Joule, 3, 2001-2019(2019).

    [25] A AGUBRA V, W FERGUS J. The formation and stability of the solid electrolyte interface on the graphite anode. Journal of Power Sources, 268, 153-162(2014).

    [26] K HEISKANEN S, J KIM, L LUCHT B. Generation and evolution of the solid electrolyte interface of lithium-ion batteries. Joule, 3, 2322-2333(2019).

    Yong LIU, Haijun BAI, Qizhi ZHAO, Jinge YANG, Yujie LI, Chunman ZHENG, Kai XIE. Storage Aging Mechanism of LiNi0.8Co0.15Al0.05O2/Graphite Li-ion Batteries at High State of Charge[J]. Journal of Inorganic Materials, 2021, 36(2): 175
    Download Citation