• Laser & Optoelectronics Progress
  • Vol. 59, Issue 2, 0210008 (2022)
Zhitao Guo, Yi Su, Jinli Yuan*, and Linlin Zhao
Author Affiliations
  • School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
  • show less
    DOI: 10.3788/LOP202259.0210008 Cite this Article Set citation alerts
    Zhitao Guo, Yi Su, Jinli Yuan, Linlin Zhao. LDCT Denoising Method Based on Dual Attention Mechanism and Compound Loss[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0210008 Copy Citation Text show less
    Dual attention module. (1) Channel attention module; (2) spatial attention module
    Fig. 1. Dual attention module. (1) Channel attention module; (2) spatial attention module
    Channel attention module
    Fig. 2. Channel attention module
    Spatial attention module
    Fig. 3. Spatial attention module
    Network structure model
    Fig. 4. Network structure model
    Preprocessing module
    Fig. 5. Preprocessing module
    CT images of abdomen. (a) Test fig.1; (b) test fig.2
    Fig. 6. CT images of abdomen. (a) Test fig.1; (b) test fig.2
    LDCT and denoising effect of different algorithms of test Fig. 1. (a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm; (h) NDCT
    Fig. 7. LDCT and denoising effect of different algorithms of test Fig. 1. (a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm; (h) NDCT
    Partial enlarged view of ROI in Figs.7. (a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm; (h) NDCT
    Fig. 8. Partial enlarged view of ROI in Figs.7. (a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm; (h) NDCT
    Noise after denoising by LDCT and different algorithms in Figs. 7. (a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm
    Fig. 9. Noise after denoising by LDCT and different algorithms in Figs. 7. (a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm
    LDCT and denoising effect of different algorithms of test Fig. 2.(a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm; (h) NDCT
    Fig. 10. LDCT and denoising effect of different algorithms of test Fig. 2.(a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm; (h) NDCT
    Partial enlarged view of ROI in Figs.10. (a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm ; (h) NDCT
    Fig. 11. Partial enlarged view of ROI in Figs.10. (a) LDCT; (b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm ; (h) NDCT
    Noise after denoising by LDCT and different algorithms in Figs.10. (a) LDCT;(b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm
    Fig. 12. Noise after denoising by LDCT and different algorithms in Figs.10. (a) LDCT;(b) BM3D; (c) K-SVD; (d) RED-CNN; (e) WGAN-VGG; (f) CycleGAN; (g) proposed algorithm
    Performance indicators of ROI area in Fig. 7 and Fig. 10. (a) PSNR indicator; (b) SSIM indicator
    Fig. 13. Performance indicators of ROI area in Fig. 7 and Fig. 10. (a) PSNR indicator; (b) SSIM indicator
    AlgorithmFig. 7Fig. 10
    PSNRSSIMPSNRSSIM
    LDCT16.99860.688815.66970.5829
    BM3D18.37820.705616.98220.6006
    K-SVD18.44490.696817.06100.5917
    RED-CNN22.30740.726720.71730.6167
    WGAN-VGG20.79280.711519.21190.6014
    CycleGAN21.60820.718620.01650.6097
    Proposed algorithm22.95770.758720.85070.6529
    Table 1. Objective evaluation indicators in Fig. 7 and Fig. 10
    AlgorithmPSNRSSIM
    LDCT21.57560.7928
    BM3D23.91340.8122
    K-SVD24.07040.8040
    RED-CNN26.44640.8195
    WGAN-VGG24.92130.8121
    CycleGAN25.72640.8163
    Proposed algorithm27.21760.8538
    Table 2. Average objective indicators of different algorithms in test set
    Zhitao Guo, Yi Su, Jinli Yuan, Linlin Zhao. LDCT Denoising Method Based on Dual Attention Mechanism and Compound Loss[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0210008
    Download Citation