• Opto-Electronic Engineering
  • Vol. 47, Issue 4, 180654 (2020)
Liu Xin1、2、3, Li Xinyang1、2、*, and Du Rui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.180654 Cite this Article
    Liu Xin, Li Xinyang, Du Rui. Modeling and inverse compensation control of hysteresis nonlinear characteristics of piezoelectric steering mirror[J]. Opto-Electronic Engineering, 2020, 47(4): 180654 Copy Citation Text show less
    References

    [1] Tyson R K. Introduction to Adaptive Optics[M]. Bellingham, Washington: SPIE Press, 2000.

    [2] Wang Y K, Hu L F, Wang C C, et al. Modeling and control of Tip/Tilt Mirror in liquid crystal adaptive optical system[J]. Optics and Precision Engineering, 2016, 24(4): 771–779.

    [3] Wang C C, Hu L F, He B, et al. Hysteresis compensation method of piezoelectric steering mirror based on neural network[J]. Chinese Journal of Lasers, 2013, 40(11): 1113001.

    [4] Perez Arancibia N O, Chen N, Gibson J S, et al. Variable-order adaptive control of a microelectromechanical steering mirror for suppression of laser beam jitter[J]. Optical Engineering, 2006, 45(10): 104206.

    [5] Tan F F, Chen X T, Yao B D, et al. Tilt correction system for laser atmospheric propagation[J]. Infrared and Laser Engineering, 2011, 40(3): 429–432.

    [6] Wang H H, Chen F B, Shou S J, et al. High precision electro-optical tracking system based on fast steering mirror[J]. Journal of Applied Optics, 2010, 31(6): 909–913.

    [7] Kluk D J, Boulet M T, Trumper D L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator[J]. Mechatronics, 2012, 22(3): 257–270.

    [8] Xu F F, Ji M, Zhao C S. Status of fast steering mirror[J]. Journal of Applied Optics, 2010, 31(5): 847–850.

    [9] Mayergoyz I D. Mathematical Models of Hysteresis[M]. New York: Springer-Verlag, 1991.

    [10] Hu H, Mrad R B. On the classical Preisach model for hysteresis in piezoceramic actuators[J]. Mechatronics, 2003, 13(2): 85–94.

    [11] Banks H T, Kurdila A J. Hysteretic control influence operators representing smart material actuators: identification and approximation[C]//Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 1996: 3711–3716.

    [12] Su C Y, Wang Q Q, Chen X K, et al. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis[J]. IEEE Transactions on Automatic Control, 2005, 50(12): 2069–2074.

    [13] Zhao X L. Modeling and control for hysteresis systems based on hysteretic operator[D]. Shanghai: Shanghai Jiao Tong University, 2006.

    [14] Ma L W. Modeling and control for sandwich hysteresis systems[D]. Shanghai: Shanghai Jiao Tong University, 2007.

    [15] Kuhnen K. Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach[J]. European Journal of Control, 2003, 9(4): 407–418.

    Liu Xin, Li Xinyang, Du Rui. Modeling and inverse compensation control of hysteresis nonlinear characteristics of piezoelectric steering mirror[J]. Opto-Electronic Engineering, 2020, 47(4): 180654
    Download Citation